On the number of countable models of constant and unary predicates expansions of the dense meet-tree theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 755-770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we investigate Ehrenfeucht theories, that is, theories which have finitely many countable models but which are not countably categorical. More precisely, we count all possible numbers of countable models of the theory DMT of dense meet-trees expanded by several sequences of constants including decreasing ones and by unary predicates with finite realizations. Also, we study the realizations of models over a certain set of formulas based on the Rudin-Keisler preorders on models.
Keywords: Ehrenfeucht theory, the number of countable models, the number of limit models, the number of prime models, small theory, Rudin-Keisler preorder.
Mots-clés : Constant expansion
@article{SEMR_2024_21_2_a3,
     author = {A. B. Dauletiyarova and V. V. Verbovskiy},
     title = {On the number of countable models of constant and unary predicates expansions of the dense meet-tree theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {755--770},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a3/}
}
TY  - JOUR
AU  - A. B. Dauletiyarova
AU  - V. V. Verbovskiy
TI  - On the number of countable models of constant and unary predicates expansions of the dense meet-tree theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 755
EP  - 770
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a3/
LA  - en
ID  - SEMR_2024_21_2_a3
ER  - 
%0 Journal Article
%A A. B. Dauletiyarova
%A V. V. Verbovskiy
%T On the number of countable models of constant and unary predicates expansions of the dense meet-tree theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 755-770
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a3/
%G en
%F SEMR_2024_21_2_a3
A. B. Dauletiyarova; V. V. Verbovskiy. On the number of countable models of constant and unary predicates expansions of the dense meet-tree theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 755-770. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a3/

[1] A. Alibek, B.S. Baizhanov, B.Sh. Kulpeshov, T.S. Zambarnaya, “Vaught's conjecture for weakly o-minimal theories of convexity rank 1”, Ann. Pure Appl. Logic, 169:11 (2018), 1190–1209 | DOI | MR | Zbl

[2] B.S. Baizhanov, S.V. Sudoplatov, V.V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Sib. Èlectron. Mat. Izv., 9 (2012), 161–184 http://semr.math.nsc.ru/v9/p161-184.pdf | MR | Zbl

[3] D.Yu. Emel'yanov, B.Sh. Kulpeshov, S.V. Sudoplatov, “Algebras of distributions for binary formulas in countably categorical weakly o-minimal structures”, Algerba Logic, 56:1 (2017), 13–36 | DOI | MR | Zbl

[4] B.Sh. Kulpeshov, “On connectedness in partially ordered structures”, AIP Conf. Proc., 1759 (2016), 020062 | DOI

[5] B.Sh. Kulpeshov, S.V. Sudoplatov, “Linearly ordered theories which are nearly countably categorical”, Math. Notes, 101:3 (2017), 475–483 | DOI | MR | Zbl

[6] B.Sh. Kulpeshov, “Maximality of the countable spectrum in small quite o-minimal theories”, Algebra Logic, 58:2 (2019), 137–143 | DOI | MR | Zbl

[7] B. Sh. Kulpeshov, S.V. Sudoplatov, “Distributions of countable models of quite o-minimal Ehrenfeucht theories”, Eurasian Math. J., 11:3 (2020), 66–78 | DOI | MR | Zbl

[8] B. Sh. Kulpeshov, “Vaught's conjecture for weakly o-minimal theories of finite convexity rank”, Izv. Math., 84:2 (2020), 324–347 | DOI | MR | Zbl

[9] B.Sh. Kulpeshov, S.V. Sudoplatov, “Algebras of binary formulas for weakly circularly minimal theories with non-trivial definable closure”, Lobachevskii J. Math., 43:12 (2022), 3532–3540 | DOI | MR | Zbl

[10] B.Sh. Kulpeshov, S.V. Sudoplatov, “Ranks, spectra and their dynamics for families of constant expansions of theories”, TheIzv. Irkutsk. Gos. Univ., Ser. Mat., 45 (2023), 121–137 | DOI | MR | Zbl

[11] B.Sh. Kulpeshov, S.V. Sudoplatov, “Spherical orders, properties and countable spectra of their theories”, Sib. Èlectron. Mat. Izv., 20:2 (2023), 588–599 http://semr.math.nsc.ru/v20/n2/p588-599.pdf | MR | Zbl

[12] R. Mennuni, “Weakly binary expansions of dense meet-trees”, Math. Log. Q., 68:1 (2022), 32–47 | DOI | MR | Zbl

[13] T.S. Millar, “Decidable Ehrenfeucht theories”, Proc. Sympos. Pure Math., 42 (1985), 311–321 | DOI | MR | Zbl

[14] M.G. Peretyat'kin, “On complete theories with a finite number of denumerable models”, Algebra Logic, 12:5 (1973), 310–326 | DOI | MR | Zbl

[15] S.V. Sudoplatov, “Complete theories with finitely many countable models. I”, Algebra Logic, 43:1 (2004), 62–69 | DOI | MR | Zbl

[16] S.V. Sudoplatov, “On the number of countable models of complete theories with finite Rudin-Keisler preorders”, Sib. Math. J., 48:2 (2007), 334–338 | DOI | MR | Zbl

[17] S.V. Sudoplatov, Problema Lachlana, Izd-vo NGTU, Novosibirsk, 2009 http://old.math.nsc.ru/s̃udoplatov/lachlan_03_09_2008.pdf

[18] S.V. Sudoplatov, “On distribution of countable models of disjoint unions of Ehrenfeucht theories”, Russi. Math., 62:11 (2018), 76–80 | DOI | MR | Zbl

[19] S.V. Sudoplatov, P. Tanović, “Semi-isolation and the strict order property”, Notre Dame J. Formal Logic, 56:4 (2015), 555–572 | DOI | MR | Zbl

[20] P. Tanović, S. Moconja, D. Ilić, “Around Rubin's “Theories of linear order””, J. Symb. Log., 85:4 (2020), 1403–1426 | DOI | MR | Zbl