Mots-clés : superposition
@article{SEMR_2024_21_2_a28,
author = {V. I. Panteleev and L. V. Ryabets},
title = {Parametric closed sets of multioperations on two-element set},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1326--1336},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a28/}
}
TY - JOUR AU - V. I. Panteleev AU - L. V. Ryabets TI - Parametric closed sets of multioperations on two-element set JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1326 EP - 1336 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a28/ LA - ru ID - SEMR_2024_21_2_a28 ER -
V. I. Panteleev; L. V. Ryabets. Parametric closed sets of multioperations on two-element set. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1326-1336. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a28/
[1] S. Barris, R. Willard, “Finitely many primitive positive clones”, Proc. Am. Math. Soc., 101:3 (1987), 427–430 | DOI | Zbl
[2] A.F. Danil'chenko, “Parametric expressibility of functions of three-valued logic”, Algebra Logic, 16 (1978), 266–280 | DOI | Zbl
[3] A.F. Danil'chenko, “Parametrically closed classes of functions of three-valued logic”, Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, 1978:2 (1978), 13–20 | Zbl
[4] A.V. Kuznecov, “Means for detection of nondeducibility and inexpressibility”, Logical Inference, Nauka, M., 1979, 5–33
[5] L.V. Riabets, “Operators of parametric and positive closure on the set of hyperfunctions of rank 2”, Intelligent systems. Theory and applications, 20:3 (2016), 79–84
[6] L.V. Riabets, “Parametric closed classes of hyperfunctions on two-element set”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 17 (2016), 46–61 | Zbl
[7] V.I. Panteleev, E.S. Taglasov, “$ES_I$-closure of rank 2 multifunctions: completeness criterion, classification, and types of bases”, Intelligent systems. Theory and applications, 25:2 (2021), 55–80
[8] Lo Czu Kai, “Maximal closed classes on the set of partial many-valued logic”, Kiberneticheskiy Sbornik, 25, Mir, M., 1988, 131–141
[9] Lo Czu Kai, “Completeness theory on partial many-valued logic functions”, Kiberneticheskiy Sbornik, 25, Mir, M., 1988, 142–157
[10] S.S. Marchenkov, Closed classes of Boolean functions, Nauka, Fizmatlit, M., 2000 | Zbl
[11] S.S. Marchenkov, “On expressibility of functions of many-valued logic in some logical-functional languages”, Discrete Math. Appl., 9:6 (1999), 563–581 | DOI | Zbl
[12] S.S. Marchenkov, “Positive closed classes of three-valued logic”, J. Appl. Indust. Math., 8:2 (2014), 256–266 | DOI | Zbl
[13] S.S. Marchenkov, A.A. Popova, “Positively closed classes of partial Boolean functions”, Mosc. Univ. Comput. Math. Cybern., 32:3 (2008), 147–151 | DOI | Zbl
[14] V.I. Panteleev, L.V.Riabets, “The closure operator with the equality predicate branching on the set of hyperfunctions on two-element set”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 10 (2014), 93–105 | Zbl
[15] V.V. Tarasov, “Completeness criterion for partial logic functions”, Probl. Kibern., 30 (1975), 319–325, Nauka, M. | Zbl
[16] I.K. Sharankhaev, “On positive completeness and positively closed sets of multifunctions of rank 2”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1313–1319 | Zbl
[17] R. Doroslova$\check{ c }$ki, J. Pantovi$\acute{ c }$, G. Vojvodi$\acute{ c }$, “One interval in the lattice of partial hyperclones”, Czech Math J., 55:3 (2005), 719–724 | DOI | Zbl
[18] M. Pouzet, I.G. Rosenberg, “Small clones and the projection property”, Algebra Univers., 63:1 (2010), 37–44 | DOI | Zbl
[19] H. Machida, “Hyperclones on a two-element set”, Mult.-Valued Log., 8:4 (2002), 495–501 | DOI | Zbl
[20] H. Machida, J. Pantovi$\acute{ c }$, “On maximal hyperclones on $\{0, 1\}$ - a new approach”, Proc. of 38th IEEE International Symposium on Multiple-Valued Logic, ISMVL 2008, 2008, 32–37
[21] B.A. Romov, “Hyperclones on a finite set”, Proc. of 27th International Symposium on Multiple-Valued Logic, 1997, 83–88 | DOI
[22] R.V. Freĭwald, “A completeness criterion for partial functions of logic and many-valued logic algebras”, Soviet Physics Dokl., 11 (1966), 288–289 | Zbl