@article{SEMR_2024_21_2_a27,
author = {V. L. Beresnev and A. A. Melnikov},
title = {Upper bound procedure for dynamic competitive facility location problem with profit targeting},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {960--971},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a27/}
}
TY - JOUR AU - V. L. Beresnev AU - A. A. Melnikov TI - Upper bound procedure for dynamic competitive facility location problem with profit targeting JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 960 EP - 971 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a27/ LA - en ID - SEMR_2024_21_2_a27 ER -
%0 Journal Article %A V. L. Beresnev %A A. A. Melnikov %T Upper bound procedure for dynamic competitive facility location problem with profit targeting %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 960-971 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a27/ %G en %F SEMR_2024_21_2_a27
V. L. Beresnev; A. A. Melnikov. Upper bound procedure for dynamic competitive facility location problem with profit targeting. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 960-971. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a27/
[1] V.L. Beresnev, A.A. Melnikov, “Additional constraints for dynamic competitive facility location problem”, J. Appl. Ind. Math., 17 (2023), 483–490 | DOI | MR
[2] V.L. Beresnev, A.A. Melnikov, “Approximation of the competitive facility location problem with MIPs”, Comput. Oper. Res., 104 (2019), 139–148 | DOI | MR | Zbl
[3] M. Hemmati, J.C. Smith, “A mixed-integer bilevel programming approach for a competitive prioritized set covering problem”, Discrete Optim., 20 (2016), 105–134 | DOI | MR | Zbl
[4] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, “A new general-purpose algorithm for mixed-integer bilevel linear programs”, Oper. Res., 65:6 (2017), 1615–1637 | DOI | MR | Zbl
[5] A. Rahmani, Y. Majid, “An effective branch-and-cut algorithm in order to solve the mixed integer bi-level programming”, Inter. J. Prod. Man. Eng., 5:1 (2017), 1–10 https://www.researchgate.net/publication/313258854_An_Effective_Branch-and-cut_algorithm_in_Order_to_Solve_the_Mixed_Integer_Bi-level_Programming | DOI
[6] S. Dempe, “Bilevel optimization: theory, algorithms, applications and a bibliography”, Bilevel optimization. Advances and next challenges, Springer Optim. Appl., 161, eds. Dempe S. et al., Springer, Cham, 2020 | DOI | MR | Zbl