On the nonlinear codes, obtained from the Hamming code by switchings of $ijk$-components, as partially robust codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 897-913 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the partially robustness of nonlinear codes, obtained from the Hamming code by the known switching method of $ijk$-components, is proven. Such codes have less undetectable (miscorrected) errors than traditional linear error-correcting codes of the same length, which is a great advantage for modern technologies when multiple and repeating errors are common. An error detection and correction algorithm for this construction is presented.
Keywords: the Hamming code, $ijk$-component, partially robust code, error detection
Mots-clés : error correction.
@article{SEMR_2024_21_2_a25,
     author = {D. I. Sikerina},
     title = {On the nonlinear codes, obtained from the {Hamming} code by switchings of $ijk$-components, as partially robust codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {897--913},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a25/}
}
TY  - JOUR
AU  - D. I. Sikerina
TI  - On the nonlinear codes, obtained from the Hamming code by switchings of $ijk$-components, as partially robust codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 897
EP  - 913
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a25/
LA  - en
ID  - SEMR_2024_21_2_a25
ER  - 
%0 Journal Article
%A D. I. Sikerina
%T On the nonlinear codes, obtained from the Hamming code by switchings of $ijk$-components, as partially robust codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 897-913
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a25/
%G en
%F SEMR_2024_21_2_a25
D. I. Sikerina. On the nonlinear codes, obtained from the Hamming code by switchings of $ijk$-components, as partially robust codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 897-913. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a25/

[1] Z. Wang, M. Karpovsky, A.J. Joshi, “Nonlinear multi-error correcting codes for reliable MLC nand flash memories”, IEEE Trans. on VLSI, 20:7 (2012), 1221–1234 | DOI

[2] Z. Wang, M. Karpovsky, K.J. Kulikowski, “Replacing linear Hamming codes by robust nonlinear codes results in a reliability improvement of memories”, Proceedings of IEEE/IFIP International Conference on Dependable Systems Networks, 2009, 514–523 | DOI

[3] Yu.L. Vasil'ev, “On closely-packed nongroup codes”, Probl. Kibern., 8 (1962), 337–339 | MR | Zbl

[4] S.V. Avgustinovich, F.I. Solov'eva, “On the nonsystematic perfect binary codes”, Probl. Inf. Transm., 32:3 (1996), 258–261 | MR | Zbl

[5] F. Hergert, Algebraische Methoden fur Nichtlineare Codes, Dissertation, Technische Hochschule Darmstadt, Germany, 1985

[6] S.V. Avgustinovich, F.I. Solov'eva, O. Heden, “On the ranks and kernels problem for perfect codes”, Probl. Inf. Transm., 39:4 (2003), 341–345 | DOI | MR | Zbl

[7] F.I. Solov'eva, “Survey on perfect codes”, Mat. Vopr. Kibern., 18 (2013), 5–34

[8] S.V. Avgustinovich, F.I. Solov'eva, “Construction of perfect binary codes by sequential translations of $\alpha$-components”, Probl. Inf. Transm., 33:3 (1997), 202–207 | MR | Zbl

[9] D.I. Kovalevskaya, “Mollard code as a robust nonlinear code”, Probl. Inf. Transm., 54:1 (2018), 34–47 | DOI | MR | Zbl