On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1483-1502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that a cross independence (CI) transformation of some Gaussian mixture has an asymptotically Gaussian distribution connected with the Gaussian core of the mixture by the same type of transform. We suggest using this fact for testing the fit of high-dimensional samples to a mixture of Gaussian distributions. In addition we study a behavior of extreme values in related triangular arrays.
Keywords: Gaussian mixture, multivariate copula, multivariate t distribution, extreme values, mixture identification.
@article{SEMR_2024_21_2_a23,
     author = {E. A. Savinov},
     title = {On the asymptotics of {Rosenblatt-type} transformations in a {Gaussian} mixture identification problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1483--1502},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/}
}
TY  - JOUR
AU  - E. A. Savinov
TI  - On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1483
EP  - 1502
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/
LA  - en
ID  - SEMR_2024_21_2_a23
ER  - 
%0 Journal Article
%A E. A. Savinov
%T On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1483-1502
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/
%G en
%F SEMR_2024_21_2_a23
E. A. Savinov. On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1483-1502. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/

[1] M. Rosenblatt, “Remarks on multivariate transformation”, Ann. Math. Stat., 23:3 (1952), 470–472 | DOI | Zbl

[2] S.Ya. Shatskikh, “The strong law of large numbers for a triangular array scheme of conditional distributions of stable elliptically contoured measures”, Theory Probab. Appl., 50:2 (2006), 248–264 | DOI | Zbl

[3] R. Nelsen, An Introduction to copulas, 2nd ed., Springer-Verlag, New York, 2006 | DOI | Zbl

[4] E. Savinov, V. Shamraeva, “On a Rosenblatt-type transformation of multivariate copulas”, Econom. Stat., 25 (2023), 39–48 | DOI | MR

[5] T. Eltoft, T. Kim, T.-W. Lee, “Multivariate scale mixture of Gaussians modeling”, Independent component analysis and blind signal separation, 6th international conference, ICA, 2006, eds. Rosca J. et al., Springer, Berlin, 2006, 799–806 | DOI | Zbl

[6] R. Orellana, R. Carvajal, J.C. Aguero, “Maximum likelihood infinite mixture distribution estimation utilizing finite Gaussian mixtures”, IFAC-Papers OnLine, 51:15 (2018), 706–711 | DOI

[7] L. Melkumova, S.Ya. Shatskikh, “Maximum likelihood method in de Finetti's theorem”, Theory Probab. Appl., 63:4 (2019), 657–663 | DOI | Zbl

[8] D.K. Dey, “Estimation of scale parameters in mixture distributions”, Can. J. Stat., 18:2 (1990), 171–178 | DOI | Zbl

[9] S. Kotz, S. Nadarajah, Multivariate t distributions and their applications, Cambridge University Press, Cambridge, 2004 | DOI | Zbl

[10] E.A. Savinov, “Limit theorem for the maximum of random variables connected by IT-copulas of Student's t-distribution”, Theory Probab. Appl., 59:3 (2015), 508–516 | DOI | Zbl

[11] A. Heinen, A. Valdesogo, “Spearman rank correlation of the bivariate Student t and scale mixtures of normal distributions”, J. Multivariate Anal., 179 (2020), 104650 | DOI | Zbl

[12] H. Joe, “Families of m-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters”, IMS Lecture Notes Monogr. Ser., 28, 1996, 120–141 | DOI | MR

[13] T. Bedford, R.M. Cooke, “Probability density decomposition for conditionally dependent random variables modeled by vines”, Ann. Math. Artif. Intell., 32:1-4 (2001), 245–268 | DOI | Zbl

[14] T. Bedford, R.M. Cooke, “Vines – a new graphical model for dependent random variables”, Ann. Stat., 30:4 (2002), 1031–1068 | DOI | Zbl

[15] P. Hall, Q. Yao, “Approximating conditional distribution functions using dimension reduction”, Ann. Stat., 33:3 (2005), 1404–1421 | DOI | Zbl

[16] N. Henze, B. Zirkler, “A class of invariant consistent tests for multivariate normality”, Commun. Stat., Theory Methods, 19:10 (1990), 3595–3617 | DOI | Zbl

[17] A.V. Lebedev, “Extremal indices in a series scheme and their applications”, Informatics Appl., 9:3 (2015), 39–54 | DOI

[18] A.A. Goldaeva, A.V. Lebedev, “On extremal indices greater than one for a scheme of series”, Lith. Math. J., 58:4 (2018), 384–398 | DOI | Zbl

[19] M. Leadbetter, G. Lindgren, H. Rootzen, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York etc., 1983 | DOI | Zbl

[20] E. Savinov, “On Gaussian triangular arrays in the case of strong dependence”, Extremes, 27 (2024), 557–570 | DOI