@article{SEMR_2024_21_2_a23,
author = {E. A. Savinov},
title = {On the asymptotics of {Rosenblatt-type} transformations in a {Gaussian} mixture identification problem},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1483--1502},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/}
}
TY - JOUR AU - E. A. Savinov TI - On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1483 EP - 1502 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/ LA - en ID - SEMR_2024_21_2_a23 ER -
%0 Journal Article %A E. A. Savinov %T On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 1483-1502 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/ %G en %F SEMR_2024_21_2_a23
E. A. Savinov. On the asymptotics of Rosenblatt-type transformations in a Gaussian mixture identification problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1483-1502. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a23/
[1] M. Rosenblatt, “Remarks on multivariate transformation”, Ann. Math. Stat., 23:3 (1952), 470–472 | DOI | Zbl
[2] S.Ya. Shatskikh, “The strong law of large numbers for a triangular array scheme of conditional distributions of stable elliptically contoured measures”, Theory Probab. Appl., 50:2 (2006), 248–264 | DOI | Zbl
[3] R. Nelsen, An Introduction to copulas, 2nd ed., Springer-Verlag, New York, 2006 | DOI | Zbl
[4] E. Savinov, V. Shamraeva, “On a Rosenblatt-type transformation of multivariate copulas”, Econom. Stat., 25 (2023), 39–48 | DOI | MR
[5] T. Eltoft, T. Kim, T.-W. Lee, “Multivariate scale mixture of Gaussians modeling”, Independent component analysis and blind signal separation, 6th international conference, ICA, 2006, eds. Rosca J. et al., Springer, Berlin, 2006, 799–806 | DOI | Zbl
[6] R. Orellana, R. Carvajal, J.C. Aguero, “Maximum likelihood infinite mixture distribution estimation utilizing finite Gaussian mixtures”, IFAC-Papers OnLine, 51:15 (2018), 706–711 | DOI
[7] L. Melkumova, S.Ya. Shatskikh, “Maximum likelihood method in de Finetti's theorem”, Theory Probab. Appl., 63:4 (2019), 657–663 | DOI | Zbl
[8] D.K. Dey, “Estimation of scale parameters in mixture distributions”, Can. J. Stat., 18:2 (1990), 171–178 | DOI | Zbl
[9] S. Kotz, S. Nadarajah, Multivariate t distributions and their applications, Cambridge University Press, Cambridge, 2004 | DOI | Zbl
[10] E.A. Savinov, “Limit theorem for the maximum of random variables connected by IT-copulas of Student's t-distribution”, Theory Probab. Appl., 59:3 (2015), 508–516 | DOI | Zbl
[11] A. Heinen, A. Valdesogo, “Spearman rank correlation of the bivariate Student t and scale mixtures of normal distributions”, J. Multivariate Anal., 179 (2020), 104650 | DOI | Zbl
[12] H. Joe, “Families of m-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters”, IMS Lecture Notes Monogr. Ser., 28, 1996, 120–141 | DOI | MR
[13] T. Bedford, R.M. Cooke, “Probability density decomposition for conditionally dependent random variables modeled by vines”, Ann. Math. Artif. Intell., 32:1-4 (2001), 245–268 | DOI | Zbl
[14] T. Bedford, R.M. Cooke, “Vines – a new graphical model for dependent random variables”, Ann. Stat., 30:4 (2002), 1031–1068 | DOI | Zbl
[15] P. Hall, Q. Yao, “Approximating conditional distribution functions using dimension reduction”, Ann. Stat., 33:3 (2005), 1404–1421 | DOI | Zbl
[16] N. Henze, B. Zirkler, “A class of invariant consistent tests for multivariate normality”, Commun. Stat., Theory Methods, 19:10 (1990), 3595–3617 | DOI | Zbl
[17] A.V. Lebedev, “Extremal indices in a series scheme and their applications”, Informatics Appl., 9:3 (2015), 39–54 | DOI
[18] A.A. Goldaeva, A.V. Lebedev, “On extremal indices greater than one for a scheme of series”, Lith. Math. J., 58:4 (2018), 384–398 | DOI | Zbl
[19] M. Leadbetter, G. Lindgren, H. Rootzen, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer-Verlag, New York etc., 1983 | DOI | Zbl
[20] E. Savinov, “On Gaussian triangular arrays in the case of strong dependence”, Extremes, 27 (2024), 557–570 | DOI