On the accuracy of the uniform approximation of universal local constant kernel estimators to smooth regression functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1450-1459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers universal locally constant kernel estimators in nonparametric regression. Previously, these estimators were studied only in the case of a continuous regression function. It is shown that with the additional condition of smoothness of the regression function, the accuracy of the uniform approximation can be improved.
Keywords: nonparametric regression, universal local constant kernel estimator, uniform consistency, fixed design, random design.
@article{SEMR_2024_21_2_a22,
     author = {Y. Y. Linke},
     title = {On the accuracy of the uniform approximation of universal local constant kernel estimators to smooth regression functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1450--1459},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a22/}
}
TY  - JOUR
AU  - Y. Y. Linke
TI  - On the accuracy of the uniform approximation of universal local constant kernel estimators to smooth regression functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1450
EP  - 1459
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a22/
LA  - ru
ID  - SEMR_2024_21_2_a22
ER  - 
%0 Journal Article
%A Y. Y. Linke
%T On the accuracy of the uniform approximation of universal local constant kernel estimators to smooth regression functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1450-1459
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a22/
%G ru
%F SEMR_2024_21_2_a22
Y. Y. Linke. On the accuracy of the uniform approximation of universal local constant kernel estimators to smooth regression functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1450-1459. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a22/

[1] Z. Cai, B. Jing, X. Kong, Z. Liu, “Nonparametric regression with nearly integrated regressors under long-run dependence”, Econom. J., 20:1 (2017), 118–138 | DOI | Zbl

[2] J. Chen, L.X. Zhang, “Local linear M-estimation for spatial processes in fixed-design models”, Metrika, 71:3 (2010), 319–340 | DOI | Zbl

[3] J. Gao, S. Kanaya, D. Li, D. Tjostheim, “Uniform consistency for nonparametric estimators in null recurrent time series”, Econom. Theory, 31:5 (2015), 911–952 | DOI | Zbl

[4] M. Hirukawa, I. Murtazashvili, A. Prokhorov, “Uniform convergence rates for nonparametric estimators smoothed by the beta kernel”, Scand. J. Stat., 49:3 (2022), 1353–1382 | DOI | Zbl

[5] P. Li, X. Li, L. Chen, “The asymptotic normality of internal estimator for nonparametric regression”, J. Inequal. Appl., 2018, 231 | DOI | Zbl

[6] X. Li, W. Yang, S. Hu, “Uniform convergence of estimator for nonparametric regression with dependent data”, J. Inequal. Appl., 2016, 142 | DOI | Zbl

[7] O.B. Linton, D.T. Jacho-Chavez, “On internally corrected and symmetrized kernel estimators for nonparametric regression”, Test, 19:1 (2010), 166–186 | DOI | Zbl

[8] O. Linton, Q. Wang, “Nonparametric transformation regression with nonstationary data”, Econom. Theory, 32:1 (2016), 1–29 | DOI | Zbl

[9] Q. Wang, P.C.B. Phillips, “Optimal bandwidth selection in nonlinear cointegrating regression”, Econom. Theory, 39:6 (2023), 1325–1337 | DOI | Zbl

[10] Y. Wang, M. Tang, “Local M-estimation for conditional variance in heteroscedastic regression models”, Commun. Stat. Theory Methods, 44:1 (2015), 48–62 | DOI | Zbl

[11] Q. Zheng, C. Gallagher, K.B. Kulasekera, “Adaptively weighted kernel regression”, J. Nonparametr. Stat., 25:4 (2013), 855–872 | DOI | Zbl

[12] I.S. Borisov, Yu. Yu. Linke, P.S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | Zbl

[13] Yu. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova, “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10 (2022), 2693 | DOI

[14] Yu. Yu. Linke, I.S. Borisov, P.S. Ruzankin, “Universal kernel-type estimation of random fields”, Statistics, 57:4 (2023), 785–810 | DOI | Zbl

[15] Yu. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova, “Multivariate universal local linear kernel estimators in nonparametric regression: uniform consistency”, Mathematics, 12 (2024), 1890 | DOI

[16] Yu. Yu. Linke, I.S. Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Commun. Stat. Theory Methods, 51:19 (2022), 6909–6918 | DOI | Zbl

[17] Yu. Yu. Linke, “Towards insensitivity of Nadaraya–Watson estimators to design correlation”, Theory Probab. Appl., 68:2 (2023), 198–210 | DOI | Zbl

[18] Yu. Yu. Linke, “On sufficient conditions for the consistency of local linear kernel estimators”, Math. Notes, 114:3 (2023), 283–296 | DOI | Zbl

[19] H.-G. Müller, Nonparametric regression analysis of longitudinal data, Springer Verlag, Berlin etc., 1998 | Zbl

[20] Yu. Yu. Linke, “Kernel estimators for the mean function of a stochastic process under sparse design conditions”, Siberian Adv. Math., 32 (2022), 269–276 | DOI

[21] Yu. Yu. Linke, I.S. Borisov, “Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process”, Theory Probab. Appl., 69:1 (2024), 35–58 | DOI | Zbl