Transient phenomena in a boundary crossing problem for random walks
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1152-1166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a limit theorem for the distribution of the number of crossings of a strip by trajectories of a random walk with small drift.
Keywords: random walk, transient phenomena in a boundary crossing problem, limit theorem, factorization method.
@article{SEMR_2024_21_2_a20,
     author = {V. I. Lotov},
     title = {Transient phenomena in a boundary crossing problem for random walks},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1152--1166},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a20/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - Transient phenomena in a boundary crossing problem for random walks
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1152
EP  - 1166
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a20/
LA  - ru
ID  - SEMR_2024_21_2_a20
ER  - 
%0 Journal Article
%A V. I. Lotov
%T Transient phenomena in a boundary crossing problem for random walks
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1152-1166
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a20/
%G ru
%F SEMR_2024_21_2_a20
V. I. Lotov. Transient phenomena in a boundary crossing problem for random walks. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1152-1166. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a20/

[1] S.V. Nagaev, “An estimate of the convergence rate for the absorption probability”, Theor. Probab. Appl., 16:1 (1971), 147–154 | DOI | Zbl

[2] A.A. Borovkov, “New limit theorems in boundary problems for sums of independent terms”, Sel. Transl. Math. Stat. Probab., 5 (1965), 315–372 | Zbl

[3] A.A. Borovkov, Stochastic Processes in Queueing Theory, Springer, New York etc., 1976 | Zbl

[4] J.L. Doob, Stochastic processes, Wiley, New York, 1953 | Zbl

[5] V.I. Lotov, A.P. L'vov, “Bounds for the number of crossings of a strip by random walk paths”, J. Math. Sci., New York, 230:1 (2018), 112–117 | DOI | Zbl

[6] V.I. Lotov, N.G. Orlova, “On the number of crossings of a strip by trajectories of a random walk”, Sb., Math., 194:6 (2003), 927–939 | DOI | Zbl

[7] V.I. Lotov, “On an approach to two-sided boundary problems”, Statistics and control of stochastic processes, Nauka, M., 1989, 117–121 | Zbl

[8] V.I. Lotov, “On the limit behavior of the distribution of the crossing number of a strip by sample paths of a random walk”, Sib. Math. J., 54:2 (2013), 265–270 | DOI | Zbl

[9] V.I. Lotov, N.G. Orlova, “Asymptotic expansions for the distribution of the crossing number of a strip by sample paths of a random walk”, Sib. Math. J., 45:4 (2004), 680–698 | DOI | Zbl

[10] V.I. Lotov, N.G. Orlova, “Asymptotic expansions for the distribution of the crossing number of a strip by a Markov-modulated random walk”, Sib. Math. J., 47:6 (2006), 1066–1083 | DOI | Zbl

[11] V.I. Lotov, “Limit theorems in a boundary crossing problem for random walks”, Sib. Math. J., 40:5 (1999), 1095–1108 | DOI | Zbl

[12] J.H.B. Kemperman, “A Wiener-Hopf type method for a general random walk with a two-sided boundary”, Ann. Math. Stat., 34:4 (1963), 1168–1193 | DOI | Zbl

[13] V.I. Lotov, “On asymptotics of distributions related to the departure of a non-discrete random walk from an interval”, Predel'nye teoremy teorii veroyatnoste i smezhnye voprosy, Tr. Inst. Mat., 1, 1982, 18–25 | Zbl

[14] A.A. Mogul'skii, “Absolute estimates for moments of certain boundary functionals”, Theory Probab. Appl., 18:2 (1973), 340–347 | DOI | Zbl

[15] A.A. Borovkov, Probability theory, Springer, London, 2013 | Zbl