Groups with symmetric non-commuting graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 645-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we characterize non-abelian finite $2$-generator groups $G$ whose non-commuting graphs are $\mathrm{Aut}(G)$-symmetric. We also find some general results on these groups. These partially answer Problem 31 posed in Peter Cameron's home page, old problems.
Keywords: non-commuting graph, symmetric graphs.
Mots-clés : automorphism group
@article{SEMR_2024_21_2_a2,
     author = {A. Abdollahi},
     title = {Groups with symmetric non-commuting graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {645--653},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a2/}
}
TY  - JOUR
AU  - A. Abdollahi
TI  - Groups with symmetric non-commuting graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 645
EP  - 653
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a2/
LA  - en
ID  - SEMR_2024_21_2_a2
ER  - 
%0 Journal Article
%A A. Abdollahi
%T Groups with symmetric non-commuting graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 645-653
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a2/
%G en
%F SEMR_2024_21_2_a2
A. Abdollahi. Groups with symmetric non-commuting graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 645-653. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a2/