On the existence of stationary sequences of $M$-orthogonal random variables with specified covariances
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 972-977 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions are studied for a covariance matrix of finite size to be interpreted as a covariance matrix of a finite segment of an infinite stationary sequence of random variables.
Keywords: stationary sequence, $m$-dependent random variables
Mots-clés : covariance matrix.
@article{SEMR_2024_21_2_a19,
     author = {I. S. Borisov},
     title = {On the existence of stationary sequences of $M$-orthogonal random variables with specified covariances},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {972--977},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a19/}
}
TY  - JOUR
AU  - I. S. Borisov
TI  - On the existence of stationary sequences of $M$-orthogonal random variables with specified covariances
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 972
EP  - 977
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a19/
LA  - ru
ID  - SEMR_2024_21_2_a19
ER  - 
%0 Journal Article
%A I. S. Borisov
%T On the existence of stationary sequences of $M$-orthogonal random variables with specified covariances
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 972-977
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a19/
%G ru
%F SEMR_2024_21_2_a19
I. S. Borisov. On the existence of stationary sequences of $M$-orthogonal random variables with specified covariances. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 972-977. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a19/

[1] V.V. Petrov, “Sequences of m-orthogonal random variables”, J. Sov. Math., 27 (1984), 3136–3139 | DOI | MR | Zbl

[2] S.K. Godunov, A.G. Antonov, O.P. Kirilyuk, V.I. Kostin, Guaranteed accuracy of solving a system of linear equations in Euclidean spaces, Nauka, Novosibirsk, 1992 | MR | Zbl