@article{SEMR_2024_21_2_a18,
author = {A. V. Logachov and A. A. Mogulskii and A. A. Yambartsev},
title = {Note on normal approximation for number of triangles in heterogeneous {Erd\H{o}s-R\'enyi} graph},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {914--926},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a18/}
}
TY - JOUR AU - A. V. Logachov AU - A. A. Mogulskii AU - A. A. Yambartsev TI - Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 914 EP - 926 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a18/ LA - en ID - SEMR_2024_21_2_a18 ER -
%0 Journal Article %A A. V. Logachov %A A. A. Mogulskii %A A. A. Yambartsev %T Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 914-926 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a18/ %G en %F SEMR_2024_21_2_a18
A. V. Logachov; A. A. Mogulskii; A. A. Yambartsev. Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 914-926. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a18/
[1] J. Gilmer, S. Kopparty, “A local central limit theorem for triangles in a random graph”, Random Struct. Algorithms, 48:4 (2016), 732–750 | DOI | MR | Zbl
[2] C. Lee, D.J. Wilkinson, “A review of stochastic block models and extensions for graph clustering”, Appl. Netw. Sci., 4 (2019), 122 | DOI | MR
[3] B. Bollobàs, S. Janson, O. Riordan, “The phase transition in inhomogeneous random graphs”, Random Struct. Algorithms, 31:1 (2007), 3–122 | DOI | MR | Zbl
[4] A. Ruciński, When are small subgraphs of a random graph normally distributed?, Probab. Theory Relat. Fields, 78:1 (1988), 1–10 | DOI | MR | Zbl
[5] A. Sah, M. Sawhney, “Local limit theorems for subgraph counts”, J. Lond. Math. Soc., II. Ser., 105:2 (2022), 950–1011 | DOI | MR | Zbl
[6] V.V. Petrov, Sum of independent random variables, Springer, Berlin etc., 1975 | DOI | MR | Zbl
[7] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer, New York, 1998 | DOI | MR | Zbl
[8] K. Nowicki, J.C. Wierman, “Subgraph counts in random graphs using incomplete U-statistics methods”, Discrete Math., 72:1-3 (1988), 299–310 | DOI | MR | Zbl
[9] C. Goldschmidt, S. Griffiths, A. Scott, “Moderate deviations of subgraph counts in the Erdős-Rényi random graphs $G(n,m)$ and $G(n,p)$”, Trans. Am. Math. Soc., 373:8 (2020), 5517–5585 | DOI | MR | Zbl
[10] S. Chatterjee, S.R.S. Varadhan, “The large deviation principle for the Erdős-Rényi random graph”, Eur. J. Comb., 32:7 (2011), 1000–1017 | DOI | MR | Zbl
[11] A.V. Logachov, A.A. Mogulskii, “Exponential Chebyshev inequalities for random graphons and their applications”, Sib. Math. J., 61:4 (2020), 697–714 | DOI | MR | Zbl
[12] A.A. Bystrov, N.V. Volod'ko, “Exponential inequalities for the distribution of the number of cycles in the Erdős-Rényi random graphs”, Sib. Adv. Math., 32:2 (2022), 87–93 | DOI | MR | Zbl
[13] A.A. Bystrov, N.V. Volodko, “Exponential inequalities for the number of subgraphs in the Erdős-Rényi random graph”, Stat. Probab. Lett., 195 (2023), 109763 | DOI | MR | Zbl
[14] A.A. Bystrov, N.V. Volodko, “Exponential inequalities for the tail probabilities of the number of cycles in generalized random graphs”, Sib. Adv. Math., 33:3 (2023), 181–189 | DOI | MR
[15] P. Eichelsbacher, B. Rednoß, “Kolmogorov bounds for decomposable random variables and subgraph counting by the Stein-Tikhomirov method”, Bernoulli, 29:3 (2023), 1821–1848 | DOI | MR | Zbl
[16] N. Privault, G. Serafin, “Normal approximation for sums of weighted U-statistics-application to Kolmogorov bounds in random subgraph counting”, Bernoulli, 26:1 (2020), 587–615 | DOI | MR | Zbl
[17] Z.-S. Zhang, “Berry-Esseen bounds for generalized U-statistics”, Electron. J. Probab., 27 (2022), 134 | DOI | MR | Zbl
[18] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Breakthroughs in statistics, eds. Kotz S., Johnson N.L., Springer, New York, 1992, 308–334 | DOI