Computable functionals of finite types in Montague semantics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1460-1472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a computable model of functionals of finite types used in Montague semantics to represent grammar categories in natural language sentences. The model is based on the notion of $\Sigma$-predicates of finite types in admissible sets introduced by Yu.L.Ershov.
Keywords: Montague semantics, functionals of finite types, generalized computability, $\Sigma$-predicates, $\Sigma$-operators.
@article{SEMR_2024_21_2_a17,
     author = {A. S. Burnistov and A. I. Stukachev},
     title = {Computable functionals of finite types in {Montague} semantics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1460--1472},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/}
}
TY  - JOUR
AU  - A. S. Burnistov
AU  - A. I. Stukachev
TI  - Computable functionals of finite types in Montague semantics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1460
EP  - 1472
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/
LA  - en
ID  - SEMR_2024_21_2_a17
ER  - 
%0 Journal Article
%A A. S. Burnistov
%A A. I. Stukachev
%T Computable functionals of finite types in Montague semantics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1460-1472
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/
%G en
%F SEMR_2024_21_2_a17
A. S. Burnistov; A. I. Stukachev. Computable functionals of finite types in Montague semantics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1460-1472. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/

[1] J. Barwise, Admissible sets and structures. An approach to definability theory, Springer, Berlin, 1975 | Zbl

[2] A.S. Burnistov, A.I. Stukachev, “Generalized computable models and Montague semantics”, Studies in Computational Intelligence, 1081 (2023), 107–124 | DOI

[3] D.R. Dowty, R.E. Wall, S. Peters, Introduction to Montague Semantics, Springer, Dordrecht, 1981 | DOI

[4] Yu.L. Ershov, “The theory of $A$-spaces”, Algebr Logic, 12:4 (1973), 209–232 | DOI

[5] Yu.L. Ershov, “Theory of domains and nearby”, Formal Methods in Programming and Their Applications, Lecture Notes in Computer Science, 735, 1993, 1–7 | DOI

[6] Yu.L. Ershov, Definability and Computability, Springer, New York, NY, 1996 https://link.springer.com/book/9780306110399

[7] R. Montague, “The Proper Treatment of Quantification in Ordinary English”, Approaches to Natural Language, eds. Hintikka K.J.J., Moravcsik J.M.E., Suppes P., Springer, Dordrecht, 1973 | DOI

[8] R. Montague, “English as a Formal Language”, Linguaggi Nella Societá e Nella Tecnica', ed. B. Visentini, Edizioni di Communita, 1970, 188–221

[9] D. Scott, “Outline of a mathematical theory of computation”, Kibern. Sb., Nov. Ser., 14 (1977), 169–176 | Zbl

[10] A.I. Stukachev, “Approximation Spaces of Temporal Processes and Effectiveness of Interval Semantics”, Adv. Intell. Syst. Comput., 1242 (2021), 53–61 | DOI

[11] A.I. Stukachev, “Interval extensions of orders and temporal approximation spaces”, Sib. Math. J., 62:4 (2021), 730–741 | DOI | Zbl

[12] A.I. Stukachev, “Effective model theory: an approach via $\Sigma$-definability”, Lect. Notes Log., 41 (2013), 164–197 | Zbl

[13] U.D. Penzina, A.I. Stukachev, “Skolem functions and generalized quantifiers for negative polarity items semantics”, Lect. Notes Netw. Syst., 1198 (2025), 212–226 (to appear)