@article{SEMR_2024_21_2_a17,
author = {A. S. Burnistov and A. I. Stukachev},
title = {Computable functionals of finite types in {Montague} semantics},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1460--1472},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/}
}
TY - JOUR AU - A. S. Burnistov AU - A. I. Stukachev TI - Computable functionals of finite types in Montague semantics JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 1460 EP - 1472 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/ LA - en ID - SEMR_2024_21_2_a17 ER -
A. S. Burnistov; A. I. Stukachev. Computable functionals of finite types in Montague semantics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1460-1472. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a17/
[1] J. Barwise, Admissible sets and structures. An approach to definability theory, Springer, Berlin, 1975 | Zbl
[2] A.S. Burnistov, A.I. Stukachev, “Generalized computable models and Montague semantics”, Studies in Computational Intelligence, 1081 (2023), 107–124 | DOI
[3] D.R. Dowty, R.E. Wall, S. Peters, Introduction to Montague Semantics, Springer, Dordrecht, 1981 | DOI
[4] Yu.L. Ershov, “The theory of $A$-spaces”, Algebr Logic, 12:4 (1973), 209–232 | DOI
[5] Yu.L. Ershov, “Theory of domains and nearby”, Formal Methods in Programming and Their Applications, Lecture Notes in Computer Science, 735, 1993, 1–7 | DOI
[6] Yu.L. Ershov, Definability and Computability, Springer, New York, NY, 1996 https://link.springer.com/book/9780306110399
[7] R. Montague, “The Proper Treatment of Quantification in Ordinary English”, Approaches to Natural Language, eds. Hintikka K.J.J., Moravcsik J.M.E., Suppes P., Springer, Dordrecht, 1973 | DOI
[8] R. Montague, “English as a Formal Language”, Linguaggi Nella Societá e Nella Tecnica', ed. B. Visentini, Edizioni di Communita, 1970, 188–221
[9] D. Scott, “Outline of a mathematical theory of computation”, Kibern. Sb., Nov. Ser., 14 (1977), 169–176 | Zbl
[10] A.I. Stukachev, “Approximation Spaces of Temporal Processes and Effectiveness of Interval Semantics”, Adv. Intell. Syst. Comput., 1242 (2021), 53–61 | DOI
[11] A.I. Stukachev, “Interval extensions of orders and temporal approximation spaces”, Sib. Math. J., 62:4 (2021), 730–741 | DOI | Zbl
[12] A.I. Stukachev, “Effective model theory: an approach via $\Sigma$-definability”, Lect. Notes Log., 41 (2013), 164–197 | Zbl
[13] U.D. Penzina, A.I. Stukachev, “Skolem functions and generalized quantifiers for negative polarity items semantics”, Lect. Notes Netw. Syst., 1198 (2025), 212–226 (to appear)