@article{SEMR_2024_21_2_a16,
author = {M. Berraho},
title = {On definable sets in some definably complete locally o-minimal structure},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1414--1425},
year = {2024},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a16/}
}
M. Berraho. On definable sets in some definably complete locally o-minimal structure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1414-1425. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a16/
[1] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998
[2] R. Cluckers, D. Haskell, “Grothendieck rings of Z-valued fields”, Bull. Symbolic Logic, 7:2 (2001), 262–269 | DOI
[3] J. Denef, F. Loeser, “Definable sets, motives and p-adic integrals”, J. Amer. Math. Soc., 14:2 (2001), 429–469 | DOI
[4] A. Fornasiero, “Locally o-minimal structures and structures with locally o-minimal open core”, Ann. Pure Appl. Logic, 164 (2013), 211–229 | DOI
[5] A. Fornasiero, P. Hieronymi, “A fundamental dichotomy for definably complete expansions of ordered fields”, Journal of Symbolic Logic, 80:4 (2015), 1091–1115 | DOI
[6] M. Fujita, Uniform local definable cell decomposition for locally o-minimal expansion of the group of reals, 2019, arXiv: 1912.05782
[7] M. Fujita, “Locally o-minimal structures with tame topological properties”, J. Symbolic Logic, 2021, 1–23 | DOI
[8] M. Fujita, Functions definable in definably complete uniformly locally o-minimal structure of the second kind, 2021, arXiv: 2010.02420
[9] M. Kageyama, M. Fujita, “Grothendieck rings of o-minimal expansions of ordered abelian groups”, J. Algebra, 299 (2006), 8–20 | DOI
[10] T. Kawakami, K. Takeuchi, H. Tanaka, A. Tsuboi, “Locally o-minimal structures”, J. Math. Soc. Japan, 64:3 (2012), 783–797
[11] J. Krajncek, T. Scanlon, “Combinatorics with definable sets: Euler characteristics and Grothendieck rings”, Bull. Symbolic Logic, 6:3 (2000), 311–330 | DOI
[12] C. Miller, “Expansions of dense linear orders with the intermediate value property”, Journal of Symbolic Logic, 66 (2001), 1783–1790 | DOI
[13] H. Shoutens, “O-minimalism”, The Journal of Symbolic Logic, 79:2 (2014), 355–409 | DOI
[14] C. Toffalori and K. Vozoris, “Notes on local o-minimality”, MLQ Math. Log. Q, 55 (2009), 617–632 | DOI
[15] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Series, 248, Cambridge Univ. Press, 1998