On definable sets in some definably complete locally o-minimal structure
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1414-1425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we show that the Grothendieck ring of a definably complete locally o-minimal expansion of the set (not the field) of real numbers $\mathbb R$ is trivial. Afterwards, we will give a sufficient condition for which a definably complete locally o-minimal expansion of an ordered group has no nontrivial definable subgroups. In the last section, we study some sets that are definable in a definably complete locally o-minimal expansion of an ordered field. Finally, a decomposition theorem for a definable set into finite union of $\pi_L$-quasi-special $\mathcal{C}^r$ submanifolds is demonstrated.
Keywords: Definably complete, locally o-minimal structures, Grothendieck rings.
@article{SEMR_2024_21_2_a16,
     author = {M. Berraho},
     title = {On definable sets in some definably complete locally o-minimal structure},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1414--1425},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a16/}
}
TY  - JOUR
AU  - M. Berraho
TI  - On definable sets in some definably complete locally o-minimal structure
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1414
EP  - 1425
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a16/
LA  - en
ID  - SEMR_2024_21_2_a16
ER  - 
%0 Journal Article
%A M. Berraho
%T On definable sets in some definably complete locally o-minimal structure
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1414-1425
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a16/
%G en
%F SEMR_2024_21_2_a16
M. Berraho. On definable sets in some definably complete locally o-minimal structure. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1414-1425. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a16/

[1] J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998

[2] R. Cluckers, D. Haskell, “Grothendieck rings of Z-valued fields”, Bull. Symbolic Logic, 7:2 (2001), 262–269 | DOI

[3] J. Denef, F. Loeser, “Definable sets, motives and p-adic integrals”, J. Amer. Math. Soc., 14:2 (2001), 429–469 | DOI

[4] A. Fornasiero, “Locally o-minimal structures and structures with locally o-minimal open core”, Ann. Pure Appl. Logic, 164 (2013), 211–229 | DOI

[5] A. Fornasiero, P. Hieronymi, “A fundamental dichotomy for definably complete expansions of ordered fields”, Journal of Symbolic Logic, 80:4 (2015), 1091–1115 | DOI

[6] M. Fujita, Uniform local definable cell decomposition for locally o-minimal expansion of the group of reals, 2019, arXiv: 1912.05782

[7] M. Fujita, “Locally o-minimal structures with tame topological properties”, J. Symbolic Logic, 2021, 1–23 | DOI

[8] M. Fujita, Functions definable in definably complete uniformly locally o-minimal structure of the second kind, 2021, arXiv: 2010.02420

[9] M. Kageyama, M. Fujita, “Grothendieck rings of o-minimal expansions of ordered abelian groups”, J. Algebra, 299 (2006), 8–20 | DOI

[10] T. Kawakami, K. Takeuchi, H. Tanaka, A. Tsuboi, “Locally o-minimal structures”, J. Math. Soc. Japan, 64:3 (2012), 783–797

[11] J. Krajncek, T. Scanlon, “Combinatorics with definable sets: Euler characteristics and Grothendieck rings”, Bull. Symbolic Logic, 6:3 (2000), 311–330 | DOI

[12] C. Miller, “Expansions of dense linear orders with the intermediate value property”, Journal of Symbolic Logic, 66 (2001), 1783–1790 | DOI

[13] H. Shoutens, “O-minimalism”, The Journal of Symbolic Logic, 79:2 (2014), 355–409 | DOI

[14] C. Toffalori and K. Vozoris, “Notes on local o-minimality”, MLQ Math. Log. Q, 55 (2009), 617–632 | DOI

[15] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Series, 248, Cambridge Univ. Press, 1998