Transposed Poisson structures on the extended Schrödinger-Virasoro and the original deformative Schrödinger-Virasoro algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1385-1399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compute $\frac{1}{2}$-derivations on the extended Schrödinger-Virasoro algebras and the original deformative Schrödinger-Virasoro algebras. The extended Schrödinger-Virasoro algebras have neither nontrivial $\frac{1}{2}$-derivations nor nontrivial transposed Poisson algebra structures. We demonstrate that the original deformative Schrödinger-Virasoro algebras have nontrivial $\frac{1}{2}$-derivations, indicating that they possess nontrivial transposed Poisson structures.
Keywords: Lie algebra, extended Schrödinger-Virasoro algebra, original deformative Schrödinger-Virasoro algebra, transposed Poisson algebra, $\frac 1 2$-derivation.
@article{SEMR_2024_21_2_a14,
     author = {Z. Kh. Shermatova},
     title = {Transposed {Poisson} structures on the extended {Schr\"odinger-Virasoro} and the original deformative {Schr\"odinger-Virasoro} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1385--1399},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a14/}
}
TY  - JOUR
AU  - Z. Kh. Shermatova
TI  - Transposed Poisson structures on the extended Schrödinger-Virasoro and the original deformative Schrödinger-Virasoro algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1385
EP  - 1399
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a14/
LA  - en
ID  - SEMR_2024_21_2_a14
ER  - 
%0 Journal Article
%A Z. Kh. Shermatova
%T Transposed Poisson structures on the extended Schrödinger-Virasoro and the original deformative Schrödinger-Virasoro algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1385-1399
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a14/
%G en
%F SEMR_2024_21_2_a14
Z. Kh. Shermatova. Transposed Poisson structures on the extended Schrödinger-Virasoro and the original deformative Schrödinger-Virasoro algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1385-1399. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a14/

[1] K. Abdurasulov, J. Adashev, S. Eshmeteva, “Transposed Poisson structures on solvable Lie algebras with filiform nilradical”, Commun. Math., 32:3 (2024), 441–483 | DOI | MR

[2] C. Bai, R. Bai, L. Guo, Y. Wu, “Transposed Poisson algebras, Novikov-Poisson algebras, and 3-Lie algebras”, J. Algebra, 632 (2023), 535–566 | DOI | Zbl

[3] P. Deligne et al. (eds.), Quantum fields and strings: a course for mathematicians, AMS, Providence, 1999 | Zbl

[4] A. Dzhumadil'daev, Weak Leibniz algebras and transposed Poisson algebras, arXiv: 2308.15018 | DOI

[5] A. Fernández Ouaridi, “On the simple transposed Poisson algebras and Jordan superalgebras”, J. Algebra, 641 (2024), 173–198 | DOI | Zbl

[6] B.L.M. Ferreira, I. Kaygorodov, V. Lopatkin, “$\frac{1}{2}$-derivations of Lie algebras and transposed Poisson algebras”, Rev. R. Acad. Cienc. Exactas F{\i}s. Nat. Ser. A. Mat., RACSAM, 115:3 (2021), 142 | DOI | Zbl

[7] V. Filippov, “On $\delta$-derivations of Lie algebras”, Sib. Math. J., 39:6 (1998), 1218–1230 | DOI | Zbl

[8] S. Gao, C. Jiang, Y. Pei, “Structures of the extended Schrödinger-Virasoro Lie algebra $\widetilde{\mathfrak{sv}}$”, Algebra Colloq., 16:4 (2009), 549–566 | DOI | Zbl

[9] M. Henkel, “Schrödinger invariance and strongly anisotropic critical systems”, J. Stat. Phys., 75:5-6 (1994), 1023–1061 | DOI | Zbl

[10] M. Henkel, J. Unterberger, “Schrödinger invariance and spacetime symmetries”, Nucl. Phys B, 660:3 (2003), 407–435 | DOI | Zbl

[11] Q. Jiang, S. Wang, “Derivations and automorphism group of original deformative Schrödinger-Virasoro algebra”, Algebra Colloq., 22:3 (2015), 517–540 | DOI | Zbl

[12] V. Kac, Vertex algebras for beginners, AMS, Providence, 1998 | DOI | Zbl

[13] I. Kaygorodov, “Non-associative algebraic structures: classification and structure”, Commun. Math., 32:3 (2024), 1 | DOI | Zbl

[14] I. Kaygorodov, M. Khrypchenko, “Transposed Poisson structures on Block Lie algebras and superalgebras”, Linear Algebra Appl., 656 (2023), 167–197 | DOI | Zbl

[15] I. Kaygorodov, M. Khrypchenko, “Transposed Poisson structures on Witt type algebras”, Linear Algebra Appl., 665 (2023), 196–210 | DOI | Zbl

[16] I. Kaygorodov, M. Khrypchenko, “Transposed Poisson structures on generalized Witt algebras and Block Lie algebras”, Result. Math., 78:5 (2023), 186 | DOI | Zbl

[17] I. Kaygorodov, A. Khudoyberdiyev, “Transposed Poisson structures on solvable and perfect Lie algebras”, J. Phys. A. Math. Theor., 57:3 (2024), 035205 | DOI | Zbl

[18] I. Kaygorodov, A. Khudoyberdiyev, Z. Shermatova, Transposed Poisson structures on Witt-type algebras, arXiv: 2405.11108 | DOI

[19] I. Kaygorodov, A. Khudoyberdiyev, Z. Shermatova, “Transposed Poisson structures on Virasoro-type algebras”, J. Geom. Phys., 207 (2025), 105356 | DOI

[20] J. Li, Y. Su, L. Zhu, “$2$-cocycle of original deformative Schrödinger-Virasoro algebras”, Sci. China, Ser. A, 51:11 (2008), 1989–1999 | DOI | Zbl

[21] G. Liu, C. Bai, “A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie Poisson bialgebras”, Commun. Contemp. Math., 26:8 (2024), 2350050 | DOI | Zbl

[22] G. Liu, C. Bai, “New splittings of operations of Poisson algebras and transposed Poisson algebras and related algebraic structures”, Algebra without borders–classical and constructive nonassociative algebraic structures, eds. Hounkonnou M. N. et al., Springer, Cham, 2023, 49–96 | DOI | Zbl

[23] C. Roger, J. Unterberger, “The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study”, Ann. Henri Poincaré, 7:7-8 (2006), 1477–1529 | DOI | Zbl

[24] B. Sartayev, “Some generalizations of the variety of transposed Poisson algebras”, Comm. Math., 32:2 (2024), 3 | DOI | Zbl

[25] J. Unterberger, “On vertex algebra representations of the Schrödinger-Virasoro Lie algebra”, Nucl. Phys. B, 823:3 (2009), 320–371 | DOI | Zbl

[26] Y. Wang, Z. Chen, “$\delta$-(bi)derivations and transposed Poisson algebra structures on the $n$-th Schrödinger algebra”, J. Algebra Appl., 2024, 2550328 | DOI

[27] Ya Yang, X. Tang, “Transposed Poisson structures on loop Heisenberg-Virasoro Lie algebra”, Bull. Belg. Math. Soc. Simon Stevin, 31:2 (2024), 238–249 | DOI | Zbl

[28] Ya. Yang, X. Tang, A. Khudoyberdiyev, Transposed Poisson structures on Schrödinger algebra in $(n+1)$-dimensional space-time, arXiv: 2303.08180 | DOI

[29] L. Yuan, Q. Hua, “$\frac{1}{2}$-(bi)derivations and transposed Poisson algebra structures on Lie algebras”, Linear Multilinear Algebra, 70:22 (2022), 7672–7701 | DOI | Zbl

[30] L. Yuan, Y. Wu, Y. Xu, “Lie bialgebra structures on the extended Schrödinger-Virasoro Lie algebra”, Algebra Colloq., 18:4 (2011), 709–720 | DOI | Zbl

[31] Y. Zhong, X. Tang, “$n$-derivations of the extended Schrödinger-Virasoro Lie algebra”, Algebra Colloq., 28:1 (2021), 105–118 | DOI | Zbl

[32] A. Zohrabi, P. Zusmanovich, “A $\delta$-first Whitehead lemma for Jordan algebras”, Commun. Math., 33:1 (2025) | DOI