Mots-clés : information
@article{SEMR_2024_21_2_a13,
author = {V. V. Rybakov},
title = {Multi-agent logics with interaction, unifiability and projectivity},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1370--1384},
year = {2024},
volume = {21},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a13/}
}
V. V. Rybakov. Multi-agent logics with interaction, unifiability and projectivity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1370-1384. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a13/
[1] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning about knowledge, MIT, Cambridge, 1995 | Zbl
[2] V.V. Rybakov, “Refined common knowledge logics or logics of common information”, Arch. Math. Logic, 42:2 (2003), 179–200 | DOI | Zbl
[3] S. Artemov, Evidence-based common knowledge, Technical Report TR-2004018 CUNY Ph.D. Program in Computer Science, City University of New York (CUNY), 2004
[4] S. Artemov, “Explicit generic common knowledge”, Logical Foundations of Computer Science, LFCS 2013, Lecture Notes in Computer Science, 7734, eds. Artemov S., Nerode A., Springer, Berlin–Heidelberg, 2013 | DOI
[5] S. Artemov, “Justification awareness”, J. Log. Comput., 30:8 (2020), 1431–1446 | DOI | Zbl
[6] V. Rybakov, “Temporal Multi-agent's logic, knowledge, uncertainty, and plausibility”, Agents and Multi-Agent Systems: Technologies and Applications 2021, Smart Innovation, Systems and Technologies, 241, eds. Jezic G. et al., Springer, Singapore, 2021, 205–214 | DOI
[7] F. Baader, R. Kusters, “Unification in a description logic with transitive closure of roles”, Logic for programming, artificial intelligence, and reasoning, LNCS, 2250, eds. Nieuwenhuis R. et al., Springer, Berlin, 2001, 217–232 | Zbl
[8] V.V. Rybakov, “Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus”, Ann. Pure Appl. Logic, 50:1 (1990), 71–106 | DOI | Zbl
[9] V.V. Rybakov, “Rules of inference with parameters for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 912–923 | DOI | Zbl
[10] V.V. Rybakov, “Logical consecutions in discrete linear temporal logic”, J. Symb. Log., 70:4 (2005), 1137–1149 | DOI | Zbl
[11] V.V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Annals of Pure and Applied Logic, 155 (2008), 32–45 | DOI
[12] V.V. Rybakov, “Projective formulas and unification in linear temporal logic $LTL_U$”, Log. J. IGPL, 22:4 (2014), 665–672 | DOI | Zbl
[13] V.V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Log. Comput., 26:3 (2016), 945–958 | DOI | Zbl
[14] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Sib. Math. J., 58:5 (2017), 875–886 | DOI | Zbl
[15] V.V. Rybakov, “Multiagent temporal logics with multivaluations”, Sib. Math. J., 59:4 (2018), 710–720 | DOI | Zbl
[16] V.V. Rybakov, “Branching time agents logic, satisfiability problem by rules in reduced form”, Sib. Èlektron. Mat. Izv., 16 (2019), 1158–1170 | DOI | Zbl
[17] S. Ghilardi, “Unification through projectivity”, J. Log. Comput., 7:6 (1997), 733–752 | DOI | Zbl
[18] S. Ghilardi, “Unification, finite duality and projectivity in varieties of Heyting algebras”, Ann. Pure Appl. Log., 127:1-3 (2004), 99–115 | DOI | Zbl
[19] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Log. J. IGPL, 20:1 (2012), 121–153 | DOI | Zbl