Multi-agent logics with interaction, unifiability and projectivity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1370-1384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper works with multi-agent none-classical modal logics generated by relational Kripke-like models describing transfer information and its' reliability. We suggest Kripke-like models essentially extending usual multi-modal Kripke semantics. We primarily study algorithmic problems connected with such logics. We find a proof that such logics are decidable, finding algorithms verifying satisfiability formulas, we also solve the problem of admissibility inference rules via technique of projective formulas and unification, we prove that this problem is decidable in such logics.
Keywords: modal logics, multi-agent logics, knowledge, problems of unification and admissibility, solving algorithms.
Mots-clés : information
@article{SEMR_2024_21_2_a13,
     author = {V. V. Rybakov},
     title = {Multi-agent logics with interaction, unifiability and projectivity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1370--1384},
     year = {2024},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a13/}
}
TY  - JOUR
AU  - V. V. Rybakov
TI  - Multi-agent logics with interaction, unifiability and projectivity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1370
EP  - 1384
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a13/
LA  - ru
ID  - SEMR_2024_21_2_a13
ER  - 
%0 Journal Article
%A V. V. Rybakov
%T Multi-agent logics with interaction, unifiability and projectivity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1370-1384
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a13/
%G ru
%F SEMR_2024_21_2_a13
V. V. Rybakov. Multi-agent logics with interaction, unifiability and projectivity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1370-1384. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a13/

[1] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning about knowledge, MIT, Cambridge, 1995 | Zbl

[2] V.V. Rybakov, “Refined common knowledge logics or logics of common information”, Arch. Math. Logic, 42:2 (2003), 179–200 | DOI | Zbl

[3] S. Artemov, Evidence-based common knowledge, Technical Report TR-2004018 CUNY Ph.D. Program in Computer Science, City University of New York (CUNY), 2004

[4] S. Artemov, “Explicit generic common knowledge”, Logical Foundations of Computer Science, LFCS 2013, Lecture Notes in Computer Science, 7734, eds. Artemov S., Nerode A., Springer, Berlin–Heidelberg, 2013 | DOI

[5] S. Artemov, “Justification awareness”, J. Log. Comput., 30:8 (2020), 1431–1446 | DOI | Zbl

[6] V. Rybakov, “Temporal Multi-agent's logic, knowledge, uncertainty, and plausibility”, Agents and Multi-Agent Systems: Technologies and Applications 2021, Smart Innovation, Systems and Technologies, 241, eds. Jezic G. et al., Springer, Singapore, 2021, 205–214 | DOI

[7] F. Baader, R. Kusters, “Unification in a description logic with transitive closure of roles”, Logic for programming, artificial intelligence, and reasoning, LNCS, 2250, eds. Nieuwenhuis R. et al., Springer, Berlin, 2001, 217–232 | Zbl

[8] V.V. Rybakov, “Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus”, Ann. Pure Appl. Logic, 50:1 (1990), 71–106 | DOI | Zbl

[9] V.V. Rybakov, “Rules of inference with parameters for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 912–923 | DOI | Zbl

[10] V.V. Rybakov, “Logical consecutions in discrete linear temporal logic”, J. Symb. Log., 70:4 (2005), 1137–1149 | DOI | Zbl

[11] V.V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Annals of Pure and Applied Logic, 155 (2008), 32–45 | DOI

[12] V.V. Rybakov, “Projective formulas and unification in linear temporal logic $LTL_U$”, Log. J. IGPL, 22:4 (2014), 665–672 | DOI | Zbl

[13] V.V. Rybakov, “Non-transitive linear temporal logic and logical knowledge operations”, J. Log. Comput., 26:3 (2016), 945–958 | DOI | Zbl

[14] V.V. Rybakov, “Nontransitive temporal multiagent logic, information and knowledge, deciding algorithms”, Sib. Math. J., 58:5 (2017), 875–886 | DOI | Zbl

[15] V.V. Rybakov, “Multiagent temporal logics with multivaluations”, Sib. Math. J., 59:4 (2018), 710–720 | DOI | Zbl

[16] V.V. Rybakov, “Branching time agents logic, satisfiability problem by rules in reduced form”, Sib. Èlektron. Mat. Izv., 16 (2019), 1158–1170 | DOI | Zbl

[17] S. Ghilardi, “Unification through projectivity”, J. Log. Comput., 7:6 (1997), 733–752 | DOI | Zbl

[18] S. Ghilardi, “Unification, finite duality and projectivity in varieties of Heyting algebras”, Ann. Pure Appl. Log., 127:1-3 (2004), 99–115 | DOI | Zbl

[19] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Log. J. IGPL, 20:1 (2012), 121–153 | DOI | Zbl