A new proof for part of the noncrossed product theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1145-1151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The first examples of noncrossed product division algebras were given by Amitsur in 1972. His method is based on two basic steps: (1) If the universal division algebra $U(k,n)$ is a $G$-crossed product then every division algebra of degree $n$ over $k$ should be a $G$-crossed product; (2) There are two division algebras over $k$ whose maximal subfields do not have a common Galois group. In this note, we give a short proof for the second step in the case where $\operatorname{char} k\nmid n$ and $p^3|n$.
Keywords: division algebra, crossed product
Mots-clés : valuation.
@article{SEMR_2024_21_2_a11,
     author = {M. Motiee},
     title = {A new proof for part of the noncrossed product theorem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1145--1151},
     year = {2024},
     volume = {21},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a11/}
}
TY  - JOUR
AU  - M. Motiee
TI  - A new proof for part of the noncrossed product theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 1145
EP  - 1151
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a11/
LA  - en
ID  - SEMR_2024_21_2_a11
ER  - 
%0 Journal Article
%A M. Motiee
%T A new proof for part of the noncrossed product theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 1145-1151
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a11/
%G en
%F SEMR_2024_21_2_a11
M. Motiee. A new proof for part of the noncrossed product theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 1145-1151. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a11/

[1] S.A. Amitsur, “On central division algebras”, Isr. J. Math., 12 (1972), 408–420 | DOI | Zbl

[2] S.A. Amitsur, “The generic division rings”, Isr. J. Math., 17 (1974), 241–247 | DOI | Zbl

[3] P.K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, 81, Cambridge University Press, Cambridge etc., 1983 | Zbl

[4] A.J. Engler, A. Prestel, Valued fields, Springer, Berlin, 2005 | Zbl

[5] N. Jacobson, PI-algebras. An introduction, Lecture Notes in Mathematics, 441, Springer-Verlag, Berlin etc., 1975 | DOI | Zbl

[6] T.Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York etc., 1991 | DOI | Zbl

[7] M. Motiee, A note on Amitsure's noncrossed product theorem, 2024, arXiv: 2401.03574

[8] R.S. Pierce, Associative algebras, Graduate Texts in Mathematics, 88, Springer-Verlag, New York etc., 1982 | DOI | Zbl