On $3$-generated $6$-transposition groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 540-554.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $6$-transposition groups, i.e. groups generated by a normal set of involutions $D$, such that the order of the product of any two elements from $D$ does not exceed $6$. We classify most of the groups generated by $3$ elements from $D$, two of which commute, and prove they are finite.
Mots-clés : $6$-transposition group.
@article{SEMR_2024_21_2_a1,
     author = {V. A. Afanasev and A. S. Mamontov},
     title = {On $3$-generated $6$-transposition groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {540--554},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a1/}
}
TY  - JOUR
AU  - V. A. Afanasev
AU  - A. S. Mamontov
TI  - On $3$-generated $6$-transposition groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 540
EP  - 554
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a1/
LA  - en
ID  - SEMR_2024_21_2_a1
ER  - 
%0 Journal Article
%A V. A. Afanasev
%A A. S. Mamontov
%T On $3$-generated $6$-transposition groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 540-554
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a1/
%G en
%F SEMR_2024_21_2_a1
V. A. Afanasev; A. S. Mamontov. On $3$-generated $6$-transposition groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 540-554. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a1/