On $3$-generated $6$-transposition groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 540-554
Voir la notice de l'article provenant de la source Math-Net.Ru
We study $6$-transposition groups, i.e. groups generated by a normal set of involutions $D$, such that the order of the product of any two elements from $D$ does not exceed $6$. We classify most of the groups generated by $3$ elements from $D$, two of which commute, and prove they are finite.
Mots-clés :
$6$-transposition group.
@article{SEMR_2024_21_2_a1,
author = {V. A. Afanasev and A. S. Mamontov},
title = {On $3$-generated $6$-transposition groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {540--554},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a1/}
}
V. A. Afanasev; A. S. Mamontov. On $3$-generated $6$-transposition groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 2, pp. 540-554. http://geodesic.mathdoc.fr/item/SEMR_2024_21_2_a1/