@article{SEMR_2024_21_1_a9,
author = {M. G. Peretyat'kin},
title = {The {Tarski{\textendash}Lindenbaum} algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {277--292},
year = {2024},
volume = {21},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a9/}
}
TY - JOUR AU - M. G. Peretyat'kin TI - The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 277 EP - 292 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a9/ LA - en ID - SEMR_2024_21_1_a9 ER -
%0 Journal Article %A M. G. Peretyat'kin %T The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 277-292 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a9/ %G en %F SEMR_2024_21_1_a9
M. G. Peretyat'kin. The Tarski–Lindenbaum algebra of the class of prime models with infinite algorithmic dimensions having omega-stable theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 277-292. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a9/
[1] S.S. Goncharov, Yu.L. Ershov, Constructive models, Siberian School of Algebra Logic, Consultants Bureau, New York, 2000 | MR | Zbl
[2] S.S. Goncharov, A.T. Nurtazin, “Constructive models of complete decidable theories”, Algebra Logic, 12:2 (1973), 67–77 | DOI | MR | Zbl
[3] W. Hanf, D. Myers, “Boolean sentence algebras: Isomorphism constructions”, J. Symb. Log., 48:2 (1983), 329–338 | DOI | MR | Zbl
[4] V.S. Harizanov, “Pure computable model theory”, Handbook of recursive mathematics, v. 1, Recursive model theory, eds. Ershov, Yu.L. et al., Elsevier, Amsterdam, 1998, 3–114 | MR | Zbl
[5] L. Harrington, “Recursively presented prime models”, J. Symb. Log., 39:2 (1974), 305–309 | DOI | MR | Zbl
[6] W. Hodges, A shorter model theory, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[7] S. Lempp, M.G. Peretyat'kin, R. Solomon, “The Lindenbaum algebra of the theory of the class of all finite models”, J. Math. Log., 2:2 (2002), 145–225 | DOI | MR | Zbl
[8] A.T. Nurtazin, “Strong and weak constructivizations and computable families”, Algebra Logic, 13:3 (1974), 177–184 | DOI | MR | Zbl
[9] M.G. Peretyat'kin, Finitely axiomatizable theories, Consultants Bureau, New York, 1997 | MR | Zbl
[10] M.G. Peretyat'kin, “Finitely axiomatizable theories and Lindenbaum algebras of semantic classes”, Computability theory and its applications. Current trends and open problems, Proceedings of a 1999 AMS-IMS-SIAM joint summer research conference (Boulder, CO, USA, June 13-17, 1999), Contemp. Math., 257, eds. Cholak, Peter A. et al., 2000, 221–239 | DOI | MR | Zbl
[11] M.G. Peretyat'kin, “On the Tarski-Lindenbaum algebra of the class of all strongly constructivizable prime models”, How the world computes, CiE2012, Proceedings of the Turing Centenary Conference, Lecture Notes in Computer Science, 7318, eds. Cooper, S. Barry et al., Springer, Berlin, 2012, 589–598 | DOI | MR | Zbl
[12] M.G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all strongly constructivizable countable saturated models”, The nature of computation. Logic, algorithms, applications, Proceedings CiE 2013, Lecture Notes in Computer Science, 7921, eds. Bonizzoni, Paola et al., Springer, Berlin, 2013, 342–352 | DOI | MR | Zbl
[13] M.G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one”, Sib. Èlektron. Mat. Izv., 17 (2020), 913–922 | DOI | MR | Zbl
[14] H.J. Rogers, Theory of recursive functions and effective computability, McGraw-Hill Publishing Company, New York, 1967 | MR | Zbl
[15] R. Sikorski, Boolean algebras, 3rd edition, Springer-Verlag, New York, 1969 | MR
[16] R.L. Vaught, “Denumerable models of complete theories”, Infinitistic methods, Proc. Symp. Foundations Math. (Warsaw, 1959), Pergamon Press, 1961, 303–321 | MR | Zbl