Pseudofinite $S$-acts
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 271-276
Voir la notice de l'article provenant de la source Math-Net.Ru
The work has begun to study the structure of pseudofinite acts over a monoid. A theorem on the finiteness of an arbitrary cyclic subacts of $S$-act is proved under the condition that this $S$-act is pseudofinite and the number of types of isomorphisms of finite cyclic $S$-acts is finite. It is shown that a coproduct of finite $S$-acts is pseudofinite. As a consequence, it is shown that any $S$-act, where $S$ is a finite group, is pseudofinite.
Keywords:
pseudofinite theory, act over monoid.
Mots-clés : pseudofinite act, coproduct
Mots-clés : pseudofinite act, coproduct
@article{SEMR_2024_21_1_a8,
author = {A. A. Stepanova and E. L. Efremov and S. G. Chekanov},
title = {Pseudofinite $S$-acts},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {271--276},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a8/}
}
A. A. Stepanova; E. L. Efremov; S. G. Chekanov. Pseudofinite $S$-acts. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 271-276. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a8/