Products of multidimensional matrices, stochastic matrices, and permanents
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 228-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to four basic multidimensional matrix operations (outer product, Kronecker product, contraction, and projection) and two derivative operations (dot and circle products). It is studied the interrelations between these operations, some of their algebraic properties, and their action on $k$-stochastic matrices. Also, it is proved several relations on the permanents of products of multidimensional matrices. In particular, it is shown that the permanent of the dot product of nonnegative multidimensional matrices is not less than the product of their permanents. Another result of the paper is that inequalities on the Kronecker product of nonnegative $2$-dimensional matrices cannot be extended to the multidimensional case.
Keywords: Kronecker product, contraction, dot product, stochastic matrix
Mots-clés : outer product, permanent.
@article{SEMR_2024_21_1_a5,
     author = {A. A. Taranenko},
     title = {Products of multidimensional matrices, stochastic matrices, and permanents},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {228--246},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a5/}
}
TY  - JOUR
AU  - A. A. Taranenko
TI  - Products of multidimensional matrices, stochastic matrices, and permanents
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 228
EP  - 246
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a5/
LA  - en
ID  - SEMR_2024_21_1_a5
ER  - 
%0 Journal Article
%A A. A. Taranenko
%T Products of multidimensional matrices, stochastic matrices, and permanents
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 228-246
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a5/
%G en
%F SEMR_2024_21_1_a5
A. A. Taranenko. Products of multidimensional matrices, stochastic matrices, and permanents. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 228-246. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a5/

[1] R.A. Brualdi, “Permanent of the direct product of matrices”, Pac. J. Math., 16 (1966), 471–482 | DOI | MR | Zbl

[2] M. Che, D.S. Cvetković, Y. Wei, “Inequalities on generalized tensor functions with diagonalizable and symmetric positive definite tensors”, Stat. Optim. Inf. Comput., 6:4 (2018), 483–496 | DOI | MR

[3] B. Child, I.M. Wanless, “Multidimensional permanents of polystochastic matrices”, Linear Algebra Appl., 586 (2020), 89–102 | DOI | MR | Zbl

[4] A.E. Guterman, I.M. Evseev, A.A. Taranenko, “Values of the permanent function on multidimensional $(0,1)$-matrices”, Sib. Math. J., 63:2 (2022), 262–276 | DOI | MR | Zbl

[5] L. Hogben (ed.), Handbook of linear algebra, Discrete Mathematics and its Applications, Chapman Hall/CRC Press, Boca Raton, 2014 | MR | Zbl

[6] M.E. Kilmer, C.D. Martin, “Factorization strategies for third-order tensors”, Linear Algebra Appl., 435:3 (2011), 641–658 | DOI | MR | Zbl

[7] L.-H. Lim, “Singular values and eigenvalues of tensors: A variational approach”, 1st IEEE International Workshop (Piscataway, 2005), IEEE, 2005, 129–132

[8] H.F. Mac Neish, “Euler squares”, Ann. of Math. (2), 23:3 (1923), 221–227 | DOI | Zbl

[9] L. Qi, “Eigenvalues of a real supersymmetric tensor”, J. Symb. Comput., 40:6 (2005), 1302–1324 | DOI | MR | Zbl

[10] H.J. Ryser, “Neuere probleme in der kombinatorik”, Vorträge über Kombinatorik Oberwolfach (Mathematisches Forschungsinstitut Oberwolfach, July 24–29, 1967), 1967, 69–91

[11] J.-Y. Shao, “A general product of tensors with applications”, Linear Algebra Appl., 439:8 (2013), 2350–2366 | DOI | MR | Zbl

[12] A.A. Taranenko, “Permanents of multidimensional matrices: properties and applications”, J. Appl. Ind. Math., 10:4 (2016), 567–604 | DOI | MR | Zbl

[13] A.A. Taranenko, “Positiveness of the permanent of 4-dimensional polystochastic matrices of order 4”, Discrete Appl. Math., 276 (2020), 161–165 | DOI | MR | Zbl

[14] A.A. Taranenko, Perfect colorings of hypergraphs, arXiv: 2208.03447

[15] Q.-W. Wang, F. Zhang, “The permanent functions of tensors”, Acta Math. Vietnam, 43:4 (2018), 701–713 | DOI | MR | Zbl

[16] I.M. Wanless, “Transversals in Latin squares: a survey”, Surveys in combinatorics 2011, London Math. Soc. Lecture Note Ser., 392, ed. Chapman, Robin, Cambridge Univ. Press, Cambridge, 2011, 403–437 | MR | Zbl

[17] H. Yao, L. Liu, C. Bu, “Tensors product and hyperdeterminant of boundary formats product”, Linear Algebra Appl., 483 (2015), 1–20 | DOI | MR | Zbl