On Runge type theorems for solutions to strongly uniformly parabolic operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 383-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_1, G_2 $ be domains with rather regular boundaries in ${\mathbb R}^{n+1}$, $n \geq 2$, such that $G_1 \subset G_2$. We investigate the problem of approximation of solutions to strongly uniformly $2m$-parabolic system $\mathcal L$ in the domain $G_1$ by solutions to the same system in the domain $G_2$. First, we prove that the space $S _{\mathcal L}(G_2)$ of solutions to the system $\mathcal L$ in the domain $G_2$ is dense in the space $S _{\mathcal L}(G_1)$, endowed with the standard Fréchet topology of uniform convergence on compact subsets in $G_1$, if and only if the sets $G_2 (t) \setminus G_1 (t)$ have no non-empty compact components in $G_2 (t)$ for each $t\in \mathbb R$, where $G_j (t) = \{x \in {\mathbb R}^n: (x,t) \in G_j\}$. Next, under additional assumptions on the regularity of the bounded domains $G_1$ and $G_1(t)$, we prove that solutions from the Lebesgue class $L^2(G_1)\cap S _{\mathcal L}(G_1)$ can be approximated by solutions from $S _{\mathcal L}(G_2)$ if and only if the same assumption on the sets $G_2 (t) \setminus G_1 (t)$, $t\in \mathbb R$, is fulfilled.
Keywords: approximation theorems, strongly uniformly parabolic operators.
Mots-clés : Frećhet topologies
@article{SEMR_2024_21_1_a36,
     author = {A. A. Shlapunov and P. Yu. Vilkov},
     title = {On {Runge} type theorems for solutions to strongly uniformly parabolic operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {383--404},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/}
}
TY  - JOUR
AU  - A. A. Shlapunov
AU  - P. Yu. Vilkov
TI  - On Runge type theorems for solutions to strongly uniformly parabolic operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 383
EP  - 404
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/
LA  - en
ID  - SEMR_2024_21_1_a36
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%A P. Yu. Vilkov
%T On Runge type theorems for solutions to strongly uniformly parabolic operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 383-404
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/
%G en
%F SEMR_2024_21_1_a36
A. A. Shlapunov; P. Yu. Vilkov. On Runge type theorems for solutions to strongly uniformly parabolic operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 383-404. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/