On Runge type theorems for solutions to strongly uniformly parabolic operators
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 383-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G_1, G_2 $ be domains with rather regular boundaries in ${\mathbb R}^{n+1}$, $n \geq 2$, such that $G_1 \subset G_2$. We investigate the problem of approximation of solutions to strongly uniformly $2m$-parabolic system $\mathcal L$ in the domain $G_1$ by solutions to the same system in the domain $G_2$. First, we prove that the space $S _{\mathcal L}(G_2)$ of solutions to the system $\mathcal L$ in the domain $G_2$ is dense in the space $S _{\mathcal L}(G_1)$, endowed with the standard Fréchet topology of uniform convergence on compact subsets in $G_1$, if and only if the sets $G_2 (t) \setminus G_1 (t)$ have no non-empty compact components in $G_2 (t)$ for each $t\in \mathbb R$, where $G_j (t) = \{x \in {\mathbb R}^n: (x,t) \in G_j\}$. Next, under additional assumptions on the regularity of the bounded domains $G_1$ and $G_1(t)$, we prove that solutions from the Lebesgue class $L^2(G_1)\cap S _{\mathcal L}(G_1)$ can be approximated by solutions from $S _{\mathcal L}(G_2)$ if and only if the same assumption on the sets $G_2 (t) \setminus G_1 (t)$, $t\in \mathbb R$, is fulfilled.
Keywords: approximation theorems, Frećhet topologies, strongly uniformly parabolic operators.
@article{SEMR_2024_21_1_a36,
     author = {A. A. Shlapunov and P. Yu. Vilkov},
     title = {On {Runge} type theorems for solutions to strongly uniformly parabolic operators},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {383--404},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/}
}
TY  - JOUR
AU  - A. A. Shlapunov
AU  - P. Yu. Vilkov
TI  - On Runge type theorems for solutions to strongly uniformly parabolic operators
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 383
EP  - 404
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/
LA  - en
ID  - SEMR_2024_21_1_a36
ER  - 
%0 Journal Article
%A A. A. Shlapunov
%A P. Yu. Vilkov
%T On Runge type theorems for solutions to strongly uniformly parabolic operators
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 383-404
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/
%G en
%F SEMR_2024_21_1_a36
A. A. Shlapunov; P. Yu. Vilkov. On Runge type theorems for solutions to strongly uniformly parabolic operators. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 383-404. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a36/

[1] M. Beheshti, S. Umapathy, S. Krishnan, “Electrophysiological cardiac modeling: A review”, Crit Rev Biomed Eng., 44:1–2 (2016), 99–122 | DOI

[2] O.V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral representation of functions and imbedding theorems, v. I, V.H. Winston $\$ Sons, Washington, 1978 | MR | Zbl

[3] F.E. Browder, “Approximation by solutions of partial differential equations”, Am. J. Math., 84 (1962), 134–160 | DOI | MR | Zbl

[4] A. Debrouwere, T. Kalmes, Quantitative Runge type approximation theorems for zero solutions of certain partial differential operators, 2022, arXiv: 2209.10794 | MR

[5] R. Diaz, “A Runge theorem for solutions of the heat equation”, Proc. Am. Math. Soc., 80:4 (1980), 643–646 | DOI | MR | Zbl

[6] R.E. Edwards, Functional analysis. Theory and applications, Holt Rinehart and Winston, New York etc., 1965 | MR | Zbl

[7] S.D. Èĭdel'man, “Parabolic equations”, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya, 63, VINITI, M., 1990, 201–313 | MR | Zbl

[8] A. Enciso, D. Peralta-Salas, “Existence of knotted vortex tubes in steady Euler flows”, Acta Math., 214:1 (2015), 61–134 | DOI | MR | Zbl

[9] A. Enciso, M.Á. García-Ferrero, D. Peralta-Salas, “Approximation theorems for parabolic equations and movement of local hot spots”, Duke Math. J., 168:5 (2019), 897–939 | DOI | MR | Zbl

[10] A. Enciso, D. Peralta-Salas, “Approximation theorems for the Schrödinger equation and quantum vortex reconnection”, Commun. Math. Phys., 387:2 (2021), 1111–1149 | DOI | MR | Zbl

[11] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, 1964 | MR | Zbl

[12] M.Á. García-Ferrero, A. Rüland, W. Zatoń, “Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation”, Inverse Probl. Imaging, 16 (2022), 251–281 | DOI | MR | Zbl

[13] P.M. Gauthier, N. Tarkhanov, “Rational approximation and universality for a quasilinear parabolic equation”, J. Contemp. Math. Anal., Armen. Acad. Sci., 43:6 (2008), 353–364 | MR | Zbl

[14] V.P. Khavin, “Approximation in the mean by analytic functions”, Sov. Math., Dokl., 9 (1968), 245–248 | MR | Zbl

[15] B.F. Jones, jun., “An approximation theorem of Runge type for the heat equation”, Proc. Am. Math. Soc., 52 (1975), 289–292 | DOI | MR | Zbl

[16] V. Kalinin, A.A. Shlapunov, K. Ushenin, “On uniqueness theorems for the inverse problem of electrocardiography in the Sobolev spaces”, Z. Angew. Math. Mech., 103:1 (2023), e202100217 | DOI | MR | Zbl

[17] T. Kalmes, “An approximation theorem of Runge type for kernels of certain non-elliptic partial differential operators”, Bull. Sci. Math., 170 (2021), 103012 | DOI | MR | Zbl

[18] N.V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Math., 96, AMS, Providence, 2008 | DOI | MR | Zbl

[19] I.A. Kurilenko, A.A. Shlapunov, “On Carleman-type formulas for solutions to the heat equation”, J. Sib. Fed. Univ., Math. Phys., 12:4 (2019), 421–433 | DOI | MR | Zbl

[20] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and quasi-linear equations of parabolic type, AMS, Providence, 1968 | MR | Zbl

[21] P.D. Lax, “A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations”, Commun. Pure Appl. Math., 9 (1956), 747–766 | DOI | MR | Zbl

[22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod, Paris, 1969 | MR | Zbl

[23] B. Malgrange, “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution”, Ann. Inst. Fourier, 6 (1955/56), 271–355 | DOI | MR | Zbl

[24] B. Malgrange, “Sur les systèmes différentiels à coefficients constants”, Colloq. internat. Centre nat. Rech. sci., 117 (1963), 113–122 | MR | Zbl

[25] V.G. Maz'ya, V.P. Khavin, “The solutions of the Cauchy problem for the Laplace equation (uniqueness, normality, approximation)”, Tr. Mosk. Mat. Obshch., 30, 1974, 61–114 | MR | Zbl

[26] K.O. Makhmudov, O.I. Makhmudov, N.N. Tarkhanov, “A nonstandard Cauchy problem for the heat equation”, Math. Notes, 102:2 (2017), 250–260 | DOI | MR | Zbl

[27] S.N. Mergelyan, “Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation”, Usp. Mat. Nauk, 11:5(71) (1956), 3–26 | MR | Zbl

[28] V.P. Mikhailov, Partial differential equations, Nauka, M., 1976 | MR | Zbl

[29] V.P. Palamodov, Linear differential operators with constant coefficients, Die Grundlehren der mathematischen Wissenschaften, 168, Springer, Berlin, 1970 | MR | Zbl

[30] R.E. Puzyrev, A.A. Shlapunov, “On a mixed problem for the parabolic Lamé type operator”, J. Inverse Ill-Posed Probl., 23:6 (2015), 555–570 | DOI | MR | Zbl

[31] A. Rüland, M. Salo, “Quantitative Runge approximation and inverse problems”, Int. Math. Res. Not., 2019:20 (2019), 6216–6234 | DOI | MR | Zbl

[32] C. Runge, “Zur Theorie der eindeutigen analytischen Funktionen”, Acta Math., 6 (1885), 229–244 | DOI | MR | Zbl

[33] A.A. Shlapunov, “On the approximation of solutions to the heat equation from Lebesgue class $L^2$ by more regular solutions”, Math. Notes, 111:5 (2022), 782–794 | DOI | MR | Zbl

[34] A.A. Shlapunov, N.N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. Lond. Math. Soc., III Ser., 71:1 (1995), 1–54 | MR | Zbl

[35] H. Schaefer, Topological vector spaces, Springer-Verlag, New York etc., 1971 | MR | Zbl

[36] V.A. Solonnikov, “On boundary value problems for linear parabolic systems of differential equations of general form”, Proc. Steklov Inst. Math., 83 (1965), 1–184 | MR | Zbl

[37] N. Tarkhanov, Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl

[38] N. Tarkhanov, The Cauchy problem for solutions of elliptic equations, Akademie-Verlag, Berlin, 1995 | MR | Zbl

[39] N. Tarkhanov, The analysis of solutions of elliptic equations, Kluwer Academic Publishers, Dordrecht, 1997 | MR | Zbl

[40] R. Temam, Navier-Stokes equations. Theory and numerical analysis, North Holland Publ. Comp., Amsterdam etc., 1979 | MR | Zbl

[41] P.Yu. Vilkov, I.A. Kurilenko, A.A. Shlapunov, “Approximation and Carleman formulas for solutions to parabolic Lamé-type operators in cylindrical domains”, Sib. Math. J., 63:6 (2022), 1049–1059 | DOI | MR | Zbl

[42] A.G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Usp. Mat. Nauk, 22:6(138) (1967), 141–199 | MR | Zbl

[43] K. Weierstraß, “On the analytic representability of so called arbitrary functions of a real variable”, Berl. Ber., 1885, 633–640; 789–805 | Zbl