Modules of a system of surfaces, vector fields, capacity, differential forms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 196-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the relationships between p-module of a system of surfaces, vector fields, capacity and differential forms.
Mots-clés : p-modules
Keywords: vector fields, capacity, differential forms.
@article{SEMR_2024_21_1_a35,
     author = {A. S. Romanov},
     title = {Modules of a system of surfaces, vector fields, capacity, differential forms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {196--212},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a35/}
}
TY  - JOUR
AU  - A. S. Romanov
TI  - Modules of a system of surfaces, vector fields, capacity, differential forms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 196
EP  - 212
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a35/
LA  - ru
ID  - SEMR_2024_21_1_a35
ER  - 
%0 Journal Article
%A A. S. Romanov
%T Modules of a system of surfaces, vector fields, capacity, differential forms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 196-212
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a35/
%G ru
%F SEMR_2024_21_1_a35
A. S. Romanov. Modules of a system of surfaces, vector fields, capacity, differential forms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 196-212. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a35/

[1] W.P. Ziemer, “Extremal length and $p$-capacity”, Mich. Math. J., 16:1 (1969), 43–51 | DOI | MR | Zbl

[2] J. Hesse, “A p-extremal length and p-capacity equality”, Ark. Mat., 13:1-2 (1975), 131–144 | DOI | MR | Zbl

[3] P. Caraman, “New cases of equality between p-module and p-capacity”, Ann. Pol. Math., 55:1-3 (1991), 37–56 | DOI | MR | Zbl

[4] B. Fuglede, “Extremal lenght and functional completion”, Acta Math., 98:3-4 (1957), 171–219 | DOI | MR | Zbl

[5] N.N. Ural'tseva, “Entartende quasilineare elliptische Systeme”, Zap. Nauch. Sem. LOMI, 7, 1968, 184–222 | Zbl

[6] J. Lewis, “Regularity of the derivatives of solutions to certain degenerate elliptic equations”, Indiana Univ. Math. J., 32:6 (1983), 849–858 | DOI | MR | Zbl

[7] V.M. Gold'shtein, Yu.G. Reshetnyak, Quasiconformal mappings and Sobolev spaces, Kluwer Academic Publishers Group, Dordrecht etc., 1990 | MR | Zbl

[8] A.S. Romanov, “Properties of extremal functions for p-capacity in $R^2$”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 845–866 | DOI | MR

[9] V.A. Shlyk, “Capacity of a condenser and the modulus of a family of separating surfaces”, Zap. Nauchn. Sem. LOMI, 185, 1990, 168–182 | MR | Zbl

[10] T. Iwaniec, J.J. Manfredi, “Regularity of p-harmonic functions on the plane”, Rev. Mat. Iberoam., 5:1-2 (1989), 1–19 | DOI | MR | Zbl

[11] J.J. Manfredi, “p-harmonic functions in the plane”, Proc. AMS, 103:2 (1988), 473–479 | MR | Zbl

[12] A.S. Romanov, “Capacity relations in a flat quadrilateral”, Sib. Math. J., 49:4 (2008), 709–717 | DOI | MR | Zbl

[13] A.S. Romanov, “Mappings related to extremal functions for p-capacity”, Sib. Èlektron. Mat. Izv., 16 (2019), 1295–1311 | DOI | MR | Zbl

[14] V.G. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin etc., 1985 | MR | Zbl

[15] A.S. Romanov, “Extremality of p-harmonic functions in $R^2$”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1015–1022 | DOI | MR | Zbl