Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 513-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of constructing a non-smooth solution for a class of spatial time-optimal control problems in the case of a three-dimensional non-convex target set $M$ with a smooth boundary $S.$ A singular set (the so-called scattering surface) is constructed, on which the optimal result function loses smoothness. For an analytical description of the singularities of the solution, pseudo vertices are introduced, which are characteristic points of the surface $S,$ which are responsible for the occurrence of singularities. The extreme points of the scattering surface, which define its boundary, are studied. A formula is found for the extreme points of the singular set in the case when the pseudo vertices are elliptical points of the surface $S.$ Necessary conditions for the existence of pseudo vertices are obtained in terms of the curvature of the normal section $S.$ An example of constructing a solution to the speed control problem based on the obtained theoretical results is given.
Keywords: control problem, optimal result function, scattering surface, singular set, curvature, normal, pseudovertex.
@article{SEMR_2024_21_1_a32,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive {Gaussian} curvature of the boundary.},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {513--525},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 513
EP  - 525
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/
LA  - ru
ID  - SEMR_2024_21_1_a32
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 513-525
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/
%G ru
%F SEMR_2024_21_1_a32
A. A. Uspenskii; P. D. Lebedev. Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 513-525. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/