Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 513-525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of constructing a non-smooth solution for a class of spatial time-optimal control problems in the case of a three-dimensional non-convex target set $M$ with a smooth boundary $S.$ A singular set (the so-called scattering surface) is constructed, on which the optimal result function loses smoothness. For an analytical description of the singularities of the solution, pseudo vertices are introduced, which are characteristic points of the surface $S,$ which are responsible for the occurrence of singularities. The extreme points of the scattering surface, which define its boundary, are studied. A formula is found for the extreme points of the singular set in the case when the pseudo vertices are elliptical points of the surface $S.$ Necessary conditions for the existence of pseudo vertices are obtained in terms of the curvature of the normal section $S.$ An example of constructing a solution to the speed control problem based on the obtained theoretical results is given.
Keywords: control problem, optimal result function, scattering surface, singular set, curvature, normal, pseudovertex.
@article{SEMR_2024_21_1_a32,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive {Gaussian} curvature of the boundary.},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {513--525},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 513
EP  - 525
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/
LA  - ru
ID  - SEMR_2024_21_1_a32
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 513-525
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/
%G ru
%F SEMR_2024_21_1_a32
A. A. Uspenskii; P. D. Lebedev. Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 513-525. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/

[1] A.I. Subbotin, Generalized solutions of first-order PDEs. The dynamical optimization perspective, Birkhäuser, Basel, 1994 | MR | Zbl

[2] S.N. Kružkov, “Generalized solutions of the Hamilton-Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR, Sb., 27:3 (1975), 406–446 | DOI | Zbl

[3] G.V. Papakov, A.M. Taras'ev, A.A. Uspenskii, “Numerical approximations of generalized solutions of the Hamilton-Jacobi equations”, J. Appl. Math. Mech., 60:4 (1996), 567–578 | DOI | MR | Zbl

[4] S.I. Kabanikhin, O.I. Krivorotko, “Numerical solution eikonal equation”, Sib Èlectron. Math. Izv., 10, Proceedings of the IV International scientific school-conference for young scientists «Theory and numerical methods for solving inverse and ill-posed problem», Proceedings of Conferences (2013), C28–C34 | MR

[5] P.D. Lebedev, A.A. Uspenskii, “Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature”, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ., 55 (2020), 93–112 | MR

[6] P.D. Lebedev, A.A. Uspenskii, “Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the Dirichlet problem to eikonal type equation”, Sib. Èlectron Mat. Izv., 17 (2020), 2028–2044 | DOI | MR | Zbl

[7] P.D. Lebedev, A.A. Uspenskii, “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set”, Tr. Inst. Mat. Mekh. UrO RAN, 25, no. 1, 2019, 108–119 | MR

[8] V.I. Arnold, Singularities of caustics and wave fronts, Kluwer Academic Publishers, Dordrecht etc., 1990 | MR | Zbl

[9] J. Sotomayor, D. Siersma, R. Garcia, “Curvatures of conflict surfaces in Euclidean 3-space”, Geometry and topology of caustics, Proceedings of the Banach Center symposium (Warsaw, Poland, June 15-27, 1998), Banach Cent. Publ., 50, eds. Janeczko, Stanisław et al., Warsaw, 1999, 277–285 | DOI | MR | Zbl

[10] V.D. Sedykh, “Topology of singularities of a stable real caustic germ of type $E_6$”, Izv. Math., 82:3 (2018), 596–611 | DOI | MR | Zbl

[11] A.R. Alimov, I.G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russ. Math. Surv., 71:1 (2016), 1–77 | DOI | MR | Zbl

[12] R. Isaacs, Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley and Sons, New York-London-Sydney, 1965 | MR | Zbl

[13] V.F. Dem'yanov, L.V. Vasil'ev, Nondifferentiable Optimization, Springer, Berlin etc., 1985 | MR | Zbl

[14] P.D. Lebedev, A.A. Uspenskii, “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Comput. Math. Model., 19:4 (2008), 375–386 | DOI | MR | Zbl

[15] M.P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, 1976 | MR | Zbl

[16] A.D. Aleksandrov, N.Yu. Netsvetaev, Geometry. Textbook, Nauka, M., 1990 | MR | Zbl

[17] A.A. Uspenskii, “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proc. Steklov Inst. Math., 291, Suppl. 1 (2015), S239–S254 | DOI | MR | Zbl

[18] A.A. Uspenskii, P.D. Lebedev, “On the structure of the singular set of solutions in one class of 3D time-optimal control problems”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 31:3 (2021), 471–486 | DOI | MR | Zbl

[19] P.D. Lebedev, A.A. Uspenskii, Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program No 2017662074, October 27, 2017