@article{SEMR_2024_21_1_a32,
author = {A. A. Uspenskii and P. D. Lebedev},
title = {Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive {Gaussian} curvature of the boundary.},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {513--525},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/}
}
TY - JOUR AU - A. A. Uspenskii AU - P. D. Lebedev TI - Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary. JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 513 EP - 525 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/ LA - ru ID - SEMR_2024_21_1_a32 ER -
%0 Journal Article %A A. A. Uspenskii %A P. D. Lebedev %T Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary. %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 513-525 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/ %G ru %F SEMR_2024_21_1_a32
A. A. Uspenskii; P. D. Lebedev. Construction of a singular set of the optimal result function in the class of spatial problems of speed control: the case of a target set with positive Gaussian curvature of the boundary.. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 513-525. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a32/
[1] A.I. Subbotin, Generalized solutions of first-order PDEs. The dynamical optimization perspective, Birkhäuser, Basel, 1994 | MR | Zbl
[2] S.N. Kružkov, “Generalized solutions of the Hamilton-Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR, Sb., 27:3 (1975), 406–446 | DOI | Zbl
[3] G.V. Papakov, A.M. Taras'ev, A.A. Uspenskii, “Numerical approximations of generalized solutions of the Hamilton-Jacobi equations”, J. Appl. Math. Mech., 60:4 (1996), 567–578 | DOI | MR | Zbl
[4] S.I. Kabanikhin, O.I. Krivorotko, “Numerical solution eikonal equation”, Sib Èlectron. Math. Izv., 10, Proceedings of the IV International scientific school-conference for young scientists «Theory and numerical methods for solving inverse and ill-posed problem», Proceedings of Conferences (2013), C28–C34 | MR
[5] P.D. Lebedev, A.A. Uspenskii, “Construction of scattering curves in one class of time-optimal control problems with leaps of a target set boundary curvature”, Izv. Inst. Mat. Inform., Udmurt. Gos. Univ., 55 (2020), 93–112 | MR
[6] P.D. Lebedev, A.A. Uspenskii, “Properties of non stationer pseudo vertex with the break of smoothness of the target set boarder curvature in the Dirichlet problem to eikonal type equation”, Sib. Èlectron Mat. Izv., 17 (2020), 2028–2044 | DOI | MR | Zbl
[7] P.D. Lebedev, A.A. Uspenskii, “Construction of a nonsmooth solution in a time-optimal problem with a low order of smoothness of the boundary of the target set”, Tr. Inst. Mat. Mekh. UrO RAN, 25, no. 1, 2019, 108–119 | MR
[8] V.I. Arnold, Singularities of caustics and wave fronts, Kluwer Academic Publishers, Dordrecht etc., 1990 | MR | Zbl
[9] J. Sotomayor, D. Siersma, R. Garcia, “Curvatures of conflict surfaces in Euclidean 3-space”, Geometry and topology of caustics, Proceedings of the Banach Center symposium (Warsaw, Poland, June 15-27, 1998), Banach Cent. Publ., 50, eds. Janeczko, Stanisław et al., Warsaw, 1999, 277–285 | DOI | MR | Zbl
[10] V.D. Sedykh, “Topology of singularities of a stable real caustic germ of type $E_6$”, Izv. Math., 82:3 (2018), 596–611 | DOI | MR | Zbl
[11] A.R. Alimov, I.G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russ. Math. Surv., 71:1 (2016), 1–77 | DOI | MR | Zbl
[12] R. Isaacs, Differential games. A mathematical theory with applications to warfare and pursuit, control and optimization, John Wiley and Sons, New York-London-Sydney, 1965 | MR | Zbl
[13] V.F. Dem'yanov, L.V. Vasil'ev, Nondifferentiable Optimization, Springer, Berlin etc., 1985 | MR | Zbl
[14] P.D. Lebedev, A.A. Uspenskii, “Analytical and numerical construction of the optimal outcome function for a class of time-optimal problems”, Comput. Math. Model., 19:4 (2008), 375–386 | DOI | MR | Zbl
[15] M.P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, 1976 | MR | Zbl
[16] A.D. Aleksandrov, N.Yu. Netsvetaev, Geometry. Textbook, Nauka, M., 1990 | MR | Zbl
[17] A.A. Uspenskii, “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proc. Steklov Inst. Math., 291, Suppl. 1 (2015), S239–S254 | DOI | MR | Zbl
[18] A.A. Uspenskii, P.D. Lebedev, “On the structure of the singular set of solutions in one class of 3D time-optimal control problems”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 31:3 (2021), 471–486 | DOI | MR | Zbl
[19] P.D. Lebedev, A.A. Uspenskii, Program for constructing wave fronts and functions of the Euclidean distance to a compact nonconvex set, Certificate of state registration of the computer program No 2017662074, October 27, 2017