Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 481-494
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact a priori estimates are obtained for solutions of a nonlinear integro-differential equation with a sum-difference kernel in the cone of the space of functions continuous on the positive semiaxis. On the basis of these estimates, the method of weighted metrics is used to prove a global theorem on the existence, uniqueness, and method of finding a non-trivial solution of the indicated equation. It is shown that this solution can be found by the method of successive approximations of the Picard type and an estimate is given for the rate of their convergence in terms of the weight metric. Conditions under which only a trivial solution exists are indicated. Examples are given to illustrate the results obtained.
Keywords: Volterra integro-differential equation, sum-difference kernel, power nonlinearity.
@article{SEMR_2024_21_1_a31,
     author = {S. N. Askhabov},
     title = {Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {481--494},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 481
EP  - 494
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/
LA  - ru
ID  - SEMR_2024_21_1_a31
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 481-494
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/
%G ru
%F SEMR_2024_21_1_a31
S. N. Askhabov. Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 481-494. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/

[1] S.N. Askhabov, Nonlinear equations of convolution type, Fizmatlit, M., 2009 | MR

[2] H. Brunner, Volterra integral equations: An introduction to the theory and applications, Cambridge University Press, Cambridge, 2017 | MR | Zbl

[3] J.J. Keller, “Propagation of simple non-linear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | Zbl

[4] W.R. Schneider, “The general solution of a non-linear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142 | DOI | MR | Zbl

[5] W. Okrasinski, “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR

[6] V.A. Kakichev, V.S. Rogozhin, “A generalization of an equation of Chandrasekhar”, Differ. Uravn., 2:9 (1966), 1264–1270 | MR | Zbl

[7] A.F. Izmailov, “2-regularity and theorem on bifurcation”, Proceedings of the international conference dedicated to the 90th birthday of L.S. Pontryagin, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 65, eds. Gamkrelidze, R.V. et al., VINITI, M., 1999, 90–117 | Zbl

[8] P.K. Anh, N.M. Tuan, P.D. Tuan, “The finite Hartley new convolutions and solvability of the integral equations with Toeplitz plus Hankel kernels”, J. Math. Anal. Appl., 397:2 (2013), 537–549 | DOI | MR | Zbl

[9] J.N. Tsitsiklis, B.C. Levy, Integral equation and resolvents of Toeplitz plus Hankel kernels, Technical report LIDS-P-1170, Laboratory for Information and Decision System, Massachusetts Institute of Technology, Cambridge, 1981

[10] T. Tuan, P. van Hoang, N.T. Hong, “Integral equation of Toeplitz plus Hankel's type and parabolic equation related to the Kontorovich-Lebedev-Fourier generalized convolutions”, Math. Methods Appl. Sci., 41:17 (2018), 8171–8181 | DOI | MR | Zbl

[11] F.D. Gakhov, Yu.I. Cherskiĭ, Equations of convolution type, Nauka, M., 1978 | Zbl

[12] V.G. Antipov, “A singular integral equation with a "sum" kernel”, Izv. Vyssh. Uchebn. Zaved. Mat., 1959:6 (1959), 9–13 | MR | Zbl

[13] S.N. Askhabov, “System of integro-differential equations of convolution type with power nonlinearity”, J. Appl. Ind. Math., 15:3 (2021), 365–375 | DOI | MR | Zbl

[14] S.N. Askhabov, “On an integral equation with sum kernel and an inhomogeneity in the linear part”, Differ. Equ., 57:9 (2021), 1185–1194 | DOI | MR | Zbl

[15] V.A. Sadovnichii, A.A. Grigor'yan, S.V. Konyagin, Problems of student mathematical olympiads, Moscow State Univ., M., 1987 | MR

[16] N.N. Luzin, Integral and trigonometric series, GITTL, M., 1951 | MR | Zbl

[17] S.N. Askhabov, “Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part”, Differ. Equ., 56:6 (2020), 775–784 | DOI | MR | Zbl

[18] S.N. Askhabov, N.K. Karapetyants, A.Ya. Yakubov, “Integral equations of convolution type with a power nonlinearity, and their systems”, Sov. Math., Dokl., 41:2 (1990), 323–327 | MR | Zbl