@article{SEMR_2024_21_1_a31,
author = {S. N. Askhabov},
title = {Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {481--494},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/}
}
TY - JOUR AU - S. N. Askhabov TI - Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 481 EP - 494 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/ LA - ru ID - SEMR_2024_21_1_a31 ER -
S. N. Askhabov. Volterra type integro-differential equation with a sum-difference kernel and power nonlinearity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 481-494. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a31/
[1] S.N. Askhabov, Nonlinear equations of convolution type, Fizmatlit, M., 2009 | MR
[2] H. Brunner, Volterra integral equations: An introduction to the theory and applications, Cambridge University Press, Cambridge, 2017 | MR | Zbl
[3] J.J. Keller, “Propagation of simple non-linear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | Zbl
[4] W.R. Schneider, “The general solution of a non-linear integral equation of the convolution type”, Z. Angew. Math. Phys., 33:1 (1982), 140–142 | DOI | MR | Zbl
[5] W. Okrasinski, “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR
[6] V.A. Kakichev, V.S. Rogozhin, “A generalization of an equation of Chandrasekhar”, Differ. Uravn., 2:9 (1966), 1264–1270 | MR | Zbl
[7] A.F. Izmailov, “2-regularity and theorem on bifurcation”, Proceedings of the international conference dedicated to the 90th birthday of L.S. Pontryagin, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 65, eds. Gamkrelidze, R.V. et al., VINITI, M., 1999, 90–117 | Zbl
[8] P.K. Anh, N.M. Tuan, P.D. Tuan, “The finite Hartley new convolutions and solvability of the integral equations with Toeplitz plus Hankel kernels”, J. Math. Anal. Appl., 397:2 (2013), 537–549 | DOI | MR | Zbl
[9] J.N. Tsitsiklis, B.C. Levy, Integral equation and resolvents of Toeplitz plus Hankel kernels, Technical report LIDS-P-1170, Laboratory for Information and Decision System, Massachusetts Institute of Technology, Cambridge, 1981
[10] T. Tuan, P. van Hoang, N.T. Hong, “Integral equation of Toeplitz plus Hankel's type and parabolic equation related to the Kontorovich-Lebedev-Fourier generalized convolutions”, Math. Methods Appl. Sci., 41:17 (2018), 8171–8181 | DOI | MR | Zbl
[11] F.D. Gakhov, Yu.I. Cherskiĭ, Equations of convolution type, Nauka, M., 1978 | Zbl
[12] V.G. Antipov, “A singular integral equation with a "sum" kernel”, Izv. Vyssh. Uchebn. Zaved. Mat., 1959:6 (1959), 9–13 | MR | Zbl
[13] S.N. Askhabov, “System of integro-differential equations of convolution type with power nonlinearity”, J. Appl. Ind. Math., 15:3 (2021), 365–375 | DOI | MR | Zbl
[14] S.N. Askhabov, “On an integral equation with sum kernel and an inhomogeneity in the linear part”, Differ. Equ., 57:9 (2021), 1185–1194 | DOI | MR | Zbl
[15] V.A. Sadovnichii, A.A. Grigor'yan, S.V. Konyagin, Problems of student mathematical olympiads, Moscow State Univ., M., 1987 | MR
[16] N.N. Luzin, Integral and trigonometric series, GITTL, M., 1951 | MR | Zbl
[17] S.N. Askhabov, “Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part”, Differ. Equ., 56:6 (2020), 775–784 | DOI | MR | Zbl
[18] S.N. Askhabov, N.K. Karapetyants, A.Ya. Yakubov, “Integral equations of convolution type with a power nonlinearity, and their systems”, Sov. Math., Dokl., 41:2 (1990), 323–327 | MR | Zbl