Regularized asymptotic solutions of integro-differential equations with fast and slow variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 453-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers a nonlinear integro-differential system with fast and slow variables. Such systems have not been considered previously from the point of view of constructing regularized (according to Lomov) asymptotic solutions. Known works were mainly devoted to the construction of the asymptotics of the Butuzov-Vasil'eva boundary layer type, which, as is known, can be applied only if the spectrum of the matrix of the first variation (on the degenerate solution) is located strictly in the open left half-plane of a complex variable. In the case when the spectrum of the indicated matrix falls on the imaginary axis, the method of regularization by S.A. Lomov. However, this method was developed mainly for singularly perturbed differential systems that do not contain integral terms, or for integro-differential problems without slow variables. In this paper, the regularization method is generalized to two-dimensional integro-differential equations with fast and slow variables.
Keywords: nonlinear systems, integro-differential equations, regularization, slow variables.
Mots-clés : singular perturbations, fast variables
@article{SEMR_2024_21_1_a30,
     author = {V. S. Besov},
     title = {Regularized asymptotic solutions of integro-differential equations with fast and slow variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {453--462},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a30/}
}
TY  - JOUR
AU  - V. S. Besov
TI  - Regularized asymptotic solutions of integro-differential equations with fast and slow variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 453
EP  - 462
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a30/
LA  - ru
ID  - SEMR_2024_21_1_a30
ER  - 
%0 Journal Article
%A V. S. Besov
%T Regularized asymptotic solutions of integro-differential equations with fast and slow variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 453-462
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a30/
%G ru
%F SEMR_2024_21_1_a30
V. S. Besov. Regularized asymptotic solutions of integro-differential equations with fast and slow variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 453-462. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a30/

[1] S.A. Lomov, Introduction to the general theory of singular perturbations, Nauka, M., 1981 | MR | Zbl

[2] M.I. Imanaliyev, Asymptotic methods in theory singularly perturbed integro-differential systems, ILIM, Frunze, 1972 | MR

[3] A.B. Vasil'yeva, V.F. Butuzov, Asymptotic expansion of solutions for singularly perturbed equations, Nauka, M., 1973 | MR | Zbl

[4] S.A. Lomov, I.S. Lomov, Fundamentals of the mathematical theory of the boundary layer, Izd-vo MGU, M., 2011

[5] V.F. Safonov, A.A. Bobodzhanov, Kurs vysshej matematiki. Singulyarno vozmushchennye zadachi I metod regulyarizacii, uchebnoe posobie, Izdatel'skij dom MEI, M., 2012

[6] Bobodzhanova M.A., “Singulyarno vozmushchennye integrodifferencial'nye sistemy s nulevym operatorom differencial'noj chasti”, Vestnik MEI, 2010:6 (2010), 63–72

[7] Bobodzhanov A.A., Safonov V.F., “Volterra integral equations with rapidly varying kernels and their asymptotic integration”, Sb. Math., 192:8 (2001), 1139–1164 | DOI | MR | Zbl