On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 81-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we find the connection between solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part and Rota—Baxter operators of special type on a real general linear algebra $gl_n(\mathbb R)$. Using this connection, we classify solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on $gl_2(\mathbb C)$ using the classification of Rota—Baxter operators of nonzero weight on $gl_2(\mathbb C)$ and a classification of Rota—Baxter operators of weight 0 on $sl_2(\mathbb C)$.
Keywords: Lie bialgebra, Rota—Baxter operator, classical Yang—Baxter equation, general linear Lie algebra.
@article{SEMR_2024_21_1_a3,
     author = {M. E. Goncharov},
     title = {On connection between {Rota{\textemdash}Baxter} operators and solutions of the classical {Yang{\textemdash}Baxter} equation with an ad-invariant symmetric part on general linear algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {81--97},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/}
}
TY  - JOUR
AU  - M. E. Goncharov
TI  - On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 81
EP  - 97
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/
LA  - en
ID  - SEMR_2024_21_1_a3
ER  - 
%0 Journal Article
%A M. E. Goncharov
%T On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 81-97
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/
%G en
%F SEMR_2024_21_1_a3
M. E. Goncharov. On connection between Rota—Baxter operators and solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on general linear algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/

[1] N. Andruskiewitch, A.P. Jancsa, “On simple real Lie bialgebras”, Int. Math. Res. Not., 2004:3 (2004), 139–158 | DOI | MR

[2] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity”, Pac. J. Math., 10 (1960), 731–742 | DOI | MR | Zbl

[3] A.A. Belavin, V.G. Drinfel'd, “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16 (1982), 159–180 | DOI | MR | Zbl

[4] A.A. Belavin, V.G. Drinfel'd, “Triangle equations and simple Lie algebras”, Sov. Sci. Rev., Sect. C, Math. Phys. Rev., 4 (1984), 93–165 | MR | Zbl

[5] M. Cahen, S. Gutt, J. Rawnsley, “Some remarks on the classification of Poisson Lie groups”, Symplectic geometry and quantization, Cont. Math., 179, eds. Maeda, Yoshiaki et al., AMS, Providence, 1994, 1–16 | DOI | MR | Zbl

[6] V.G. Drinfeld, “Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equation”, Sov. Math. Dokl., 27 (1983), 68–71 | MR | Zbl

[7] M.A. Farinati, A.P. Jancsa, “Trivial central extensions of Lie bialgebras”, J. Algebra, 390 (2013), 56–76 | DOI | MR | Zbl

[8] M. Goncharov, “Rota-Baxter operators and non-skew-symmetric solutions of the classical Yang-Baxter equation on quadratic Lie algebras”, Sib. Èlectron. Mat. Izv., 16 (2019), 2098–2109 | DOI | MR | Zbl

[9] M. Goncharov, “The description of Rota-Baxter operators of nonzero weight on complex general linear Lie algebra of order 2”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 870–879 | DOI | MR

[10] M.E. Goncharov, “Structures of Malcev bialgebras on a simple non-Lie Malcev algebra”, Commun. Algebra, 40:8 (2012), 3071–3094 | DOI | MR | Zbl

[11] M. Goncharov, V. Gubarev, “Double Lie algebras of a nonzero weight”, Adv. Math., Part B, 409 (2022), 108680 | DOI | MR | Zbl

[12] M. Goncharov, V. Gubarev, “Rota-Baxter operators of nonzero weight on the matrix algebra of order three”, Linear Multilinear Algebra, 70:6 (2022), 1055–1080 | DOI | MR | Zbl

[13] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, 2012 https://www.intlpress.com/site/pub/files/preview/bookpubs/00000391.pdf | Zbl

[14] T.J. Hodges, “On the Cremmer-Gervais quantization of $SL(n)$”, Int. Math. Res. Not., 1995:10 (1995), 465–481 | DOI | MR | Zbl

[15] N. Jacobson, “A note on non-associative algebras”, Duke Math. J., 3:3 (1937), 544–548 | DOI | MR | Zbl

[16] P.S. Kolesnikov, “Homogeneous averaging operators on simple finite conformal Lie algebras”, J. Math. Phys., 56:7 (2015), 071702 | DOI | MR | Zbl

[17] H. Lang, Y. Sheng, “Factorizable Lie bialgebras, quadratic Rota-Baxter Lie algebras and Rota-Baxter Lie bialgebras”, Commun. Math. Phys., 397:2 (2023), 763–791 | DOI | MR | Zbl

[18] Yu Pan, Q. Liu, C. Bai, L. Guo, “PostLie algebra structures on the Lie algebra $\mathrm{sl}(2,\mathbb{C})$”, Electron. J. Linear Algebra, 23 (2012), 180–197 | DOI | MR | Zbl

[19] J. Pei, C. Bai, L. Guo, “Rota-Baxter operators on $\mathrm{sl}(2,\mathbb{C})$ and solutions of the classical Yang-Baxter equation”, J. Math. Phys., 55:2 (2014), 021701 | DOI | MR | Zbl

[20] M.A. Semenov-Tyan-Shanskii, What is a classical r-matrix?, Funct. Anal. Appl., 17:4 (1983), 259–272 | DOI | MR | Zbl

[21] A. Stolin, “Some remarks on Lie bialgebra structures on simple complex Lie algebras”, Commun. Algebra, 27:9 (1999), 4289–4302 | DOI | MR | Zbl

[22] L.A. Takhtajan, “Lectures on quantum groups”, Introduction to Quantum Group and Integrable Massive Models of Quantum Field Theory, Nankai Institute of Mathematics, China, 1990, 69–197 | DOI | MR

[23] V.N. Zhelyabin, “On a class of Jordan D-bialgebras”, St. Petersbrg. Math. J., 11:4 (2000), 589–609 | MR | Zbl