On connection between Rota---Baxter operators and solutions of the classical Yang---Baxter equation with an ad-invariant symmetric part on general linear algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 81-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we find the connection between solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part and Rota—Baxter operators of special type on a real general linear algebra $gl_n(\mathbb R)$. Using this connection, we classify solutions of the classical Yang—Baxter equation with an ad-invariant symmetric part on $gl_2(\mathbb C)$ using the classification of Rota—Baxter operators of nonzero weight on $gl_2(\mathbb C)$ and a classification of Rota—Baxter operators of weight 0 on $sl_2(\mathbb C)$.
Keywords: Lie bialgebra, Rota—Baxter operator, classical Yang—Baxter equation, general linear Lie algebra.
@article{SEMR_2024_21_1_a3,
     author = {M. E. Goncharov},
     title = {On connection between {Rota---Baxter} operators and solutions of the classical {Yang---Baxter} equation with an ad-invariant symmetric part on general linear algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {81--97},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/}
}
TY  - JOUR
AU  - M. E. Goncharov
TI  - On connection between Rota---Baxter operators and solutions of the classical Yang---Baxter equation with an ad-invariant symmetric part on general linear algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 81
EP  - 97
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/
LA  - en
ID  - SEMR_2024_21_1_a3
ER  - 
%0 Journal Article
%A M. E. Goncharov
%T On connection between Rota---Baxter operators and solutions of the classical Yang---Baxter equation with an ad-invariant symmetric part on general linear algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 81-97
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/
%G en
%F SEMR_2024_21_1_a3
M. E. Goncharov. On connection between Rota---Baxter operators and solutions of the classical Yang---Baxter equation with an ad-invariant symmetric part on general linear algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 81-97. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a3/