Mots-clés : cross diffusion
@article{SEMR_2024_21_1_a29,
author = {G. V. Grenkin},
title = {Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {347--359},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/}
}
TY - JOUR AU - G. V. Grenkin TI - Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 347 EP - 359 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/ LA - ru ID - SEMR_2024_21_1_a29 ER -
%0 Journal Article %A G. V. Grenkin %T Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 347-359 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/ %G ru %F SEMR_2024_21_1_a29
G. V. Grenkin. Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 347-359. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/
[1] A.Yu. Chebotarev, A.E. Kovtanyuk, N.D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 262–269 | DOI | MR | Zbl
[2] A.E. Kovtanyuk, A.Yu. Chebotarev, A.A. Astrakhantseva, A.A. Sushchenko, “Optimal control of endovenous laser ablation”, Opt. Spectrosc., 128:9 (2020), 1508–1516 | DOI
[3] A. Kovtanyuk, A. Chebotarev, A. Astrakhantseva, “Inverse extremum problem for a model of endovenous laser ablation”, J. Inverse Ill-Posed Probl., 29:3 (2021), 467–476 | DOI | MR | Zbl
[4] E. Schneider, M. Seaid, J. Janicka, A. Klar, “Validation of simplified $P_N$ models for radiative transfer in combustion systems”, Commun. Numer. Meth. Eng., 24:2 (2008), 85–96 | DOI | MR | Zbl
[5] E.W. Larsen, G. Thömmes, A. Klar, M. Seaïd, T. Götz, “Simplified $P_N$ approximations to the equations of radiative heat transfer and applications”, J. Comp. Phys., 183:2 (2002), 652–675 | DOI | MR | Zbl
[6] M.F. Modest, S. Lei, “The simplified spherical harmonics method for radiative heat transfer”, J. Phys. Conf. Ser., 369 (2012), 012019 | DOI
[7] A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Numerical simulations of a coupled radiative-conductive heat transfer model using a modified Monte Carlo method”, Int. J. Heat Mass Transf., 55:4 (2012), 649–654 | DOI | Zbl
[8] H. Zheng, W. Han, “On simplified spherical harmonics equations for the radiative transfer equation”, J. Math. Chem., 49:8 (2011), 1785–1797 | DOI | MR | Zbl
[9] R. Pinnau, O. Tse, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl
[10] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl
[11] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Solvability of $P_1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl
[12] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl
[13] A.A. Amosov, “Nonstationary problem of complex heat transfer in a system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014), Part 2, CMFD, 59, 2016, 5–34 | MR
[14] A.A. Amosov, “Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation”, Comput. Math. Math. Phys., 57:3 (2017), 515–540 | DOI | MR | Zbl
[15] P.S. Brantley, E.W. Larsen, “The simplified $P_3$ approximation”, Nuclear Science and Engineering, 134:1 (2000), 1–21 | DOI
[16] R. Backofen, T. Bilz, A. Ribalta, A. Voigt, “$SP_N$-approximations of internal radiation in crystal growth of optical materials”, J. Crystal Growth, 266:1-3 (2004), 264–270 | DOI
[17] A. Klar, J. Lang, M. Seaid, “Adaptive solutions of $SP_N$-approximations to radiative heat transfer in glass”, Int. J. Therm. Sci., 44:11 (2005), 1013–1023 | DOI | MR
[18] A.D. Klose, E.W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations”, J. Comput. Phys., 220:1 (2006), 441–470 | DOI | MR | Zbl
[19] M. Chu, K. Vishwanath, A.D. Klose, H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations”, Phys. Med. Biol., 54:8 (2009), 2493–2509 | DOI
[20] R.G. McClarren, “Theoretical aspects of the simplified $P_N$ equations”, Transp. Theory Stat. Phys., 39:2-4 (2010), 73–109 | DOI | MR | Zbl
[21] M.F. Modest, J. Cai, W. Ge, E. Lee, “Elliptic formulation of the simplified spherical harmonics method in radiative heat transfer”, Int. J. Heat Mass Transf., 76 (2014), 459–466 | DOI
[22] M.F. Modest, Radiative heat transfer, Academic Press, 2013 | Zbl
[23] K.M. Case, P.F. Zweifel, Linear transport theory, Addison-Wesley, 1972 | MR | Zbl
[24] F. Hecht, “New development in freefem++”, J. Numer. Math., 20:3-4 (2012), 251–265 | DOI | MR | Zbl
[25] G.V. Grenkin, “Convergence of Newton's method for equations of complex heat transfer”, Dal'nevost. Mat. Zh., 17:1 (2017), 3–10 | MR | Zbl