Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 347-359
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with a system of equations that describes steady-state process of radiative-conductive heat transfer in a bounded domain with boundary conditions of specular and diffuse reflection of radiation and boundary conditions of the third kind for temperature. For the description of radiative energy field, the $SP_3$ approximation of the simplified spherical harmonics method is used. We establish properties of existence and uniqueness of the solution of the boundary value problem under constraints on coefficients in boundary conditions which are fulfilled over entire range of feasible physical data.
Keywords: radiative heat transfer, $SP_3$ approximation, $SP_N$ approximation, unique solvability.
Mots-clés : cross diffusion
@article{SEMR_2024_21_1_a29,
     author = {G. V. Grenkin},
     title = {Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {347--359},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 347
EP  - 359
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/
LA  - ru
ID  - SEMR_2024_21_1_a29
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 347-359
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/
%G ru
%F SEMR_2024_21_1_a29
G. V. Grenkin. Correctness of a complex heat transfer model based on the simplified spherical harmonics method of the third order. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 347-359. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a29/

[1] A.Yu. Chebotarev, A.E. Kovtanyuk, N.D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 262–269 | DOI | MR | Zbl

[2] A.E. Kovtanyuk, A.Yu. Chebotarev, A.A. Astrakhantseva, A.A. Sushchenko, “Optimal control of endovenous laser ablation”, Opt. Spectrosc., 128:9 (2020), 1508–1516 | DOI

[3] A. Kovtanyuk, A. Chebotarev, A. Astrakhantseva, “Inverse extremum problem for a model of endovenous laser ablation”, J. Inverse Ill-Posed Probl., 29:3 (2021), 467–476 | DOI | MR | Zbl

[4] E. Schneider, M. Seaid, J. Janicka, A. Klar, “Validation of simplified $P_N$ models for radiative transfer in combustion systems”, Commun. Numer. Meth. Eng., 24:2 (2008), 85–96 | DOI | MR | Zbl

[5] E.W. Larsen, G. Thömmes, A. Klar, M. Seaïd, T. Götz, “Simplified $P_N$ approximations to the equations of radiative heat transfer and applications”, J. Comp. Phys., 183:2 (2002), 652–675 | DOI | MR | Zbl

[6] M.F. Modest, S. Lei, “The simplified spherical harmonics method for radiative heat transfer”, J. Phys. Conf. Ser., 369 (2012), 012019 | DOI

[7] A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Numerical simulations of a coupled radiative-conductive heat transfer model using a modified Monte Carlo method”, Int. J. Heat Mass Transf., 55:4 (2012), 649–654 | DOI | Zbl

[8] H. Zheng, W. Han, “On simplified spherical harmonics equations for the radiative transfer equation”, J. Math. Chem., 49:8 (2011), 1785–1797 | DOI | MR | Zbl

[9] R. Pinnau, O. Tse, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl

[10] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl

[11] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Solvability of $P_1$ approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl

[12] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl

[13] A.A. Amosov, “Nonstationary problem of complex heat transfer in a system of semitransparent bodies with radiation diffuse reflection and refraction boundary-value conditions”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014), Part 2, CMFD, 59, 2016, 5–34 | MR

[14] A.A. Amosov, “Stationary problem of complex heat transfer in a system of semitransparent bodies with boundary conditions of diffuse reflection and refraction of radiation”, Comput. Math. Math. Phys., 57:3 (2017), 515–540 | DOI | MR | Zbl

[15] P.S. Brantley, E.W. Larsen, “The simplified $P_3$ approximation”, Nuclear Science and Engineering, 134:1 (2000), 1–21 | DOI

[16] R. Backofen, T. Bilz, A. Ribalta, A. Voigt, “$SP_N$-approximations of internal radiation in crystal growth of optical materials”, J. Crystal Growth, 266:1-3 (2004), 264–270 | DOI

[17] A. Klar, J. Lang, M. Seaid, “Adaptive solutions of $SP_N$-approximations to radiative heat transfer in glass”, Int. J. Therm. Sci., 44:11 (2005), 1013–1023 | DOI | MR

[18] A.D. Klose, E.W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations”, J. Comput. Phys., 220:1 (2006), 441–470 | DOI | MR | Zbl

[19] M. Chu, K. Vishwanath, A.D. Klose, H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations”, Phys. Med. Biol., 54:8 (2009), 2493–2509 | DOI

[20] R.G. McClarren, “Theoretical aspects of the simplified $P_N$ equations”, Transp. Theory Stat. Phys., 39:2-4 (2010), 73–109 | DOI | MR | Zbl

[21] M.F. Modest, J. Cai, W. Ge, E. Lee, “Elliptic formulation of the simplified spherical harmonics method in radiative heat transfer”, Int. J. Heat Mass Transf., 76 (2014), 459–466 | DOI

[22] M.F. Modest, Radiative heat transfer, Academic Press, 2013 | Zbl

[23] K.M. Case, P.F. Zweifel, Linear transport theory, Addison-Wesley, 1972 | MR | Zbl

[24] F. Hecht, “New development in freefem++”, J. Numer. Math., 20:3-4 (2012), 251–265 | DOI | MR | Zbl

[25] G.V. Grenkin, “Convergence of Newton's method for equations of complex heat transfer”, Dal'nevost. Mat. Zh., 17:1 (2017), 3–10 | MR | Zbl