Two-dimensional Gavrilov flows
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A steady solution to the Euler equations is called a Gavrilov flow if the velocity vector is orthogonal to the pressure gradient at any point. Such flows can be localized that yields compactly supported solutions to the Euler equations. Gavrilov flows exist in dimentions 2 and 3. We present a complete description of two-dimensional Gavrilov flows.
Keywords: gavrilov flow.
Mots-clés : euler equations
@article{SEMR_2024_21_1_a28,
     author = {V. A. Sharafutdinov},
     title = {Two-dimensional {Gavrilov} flows},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {247--258},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - Two-dimensional Gavrilov flows
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 247
EP  - 258
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/
LA  - en
ID  - SEMR_2024_21_1_a28
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T Two-dimensional Gavrilov flows
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 247-258
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/
%G en
%F SEMR_2024_21_1_a28
V. A. Sharafutdinov. Two-dimensional Gavrilov flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/

[1] P. Constantin, J. La, V. Vicol, “Remarks on a paper by Gavrilov: Grad-Shafranov equations, sready solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications”, Geom. Funct. Anal., 29:6 (2019), 1773–1793 | DOI | MR | Zbl

[2] A.V. Gavrilov, “A steady Euler flow with compact support”, Geom. Funct. Anal., 29:1 (2019), 190–197 | DOI | MR | Zbl

[3] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Großen, Springer-Verlag, Berlin-Heidelberg-New York, 1968 | DOI | MR | Zbl

[4] V.Yu. Rovenski, V.A. Sharafutdinov, “Steady flows of ideal incompressible fluid with velocity pointwise orthogonal to the pressure gradient”, Arnold Math. J., 2023, arXiv: 2209.14572 | DOI | MR

[5] D. Ruiz, “Symmetry results for compactly supported sready solutions of the 2D Euler equations”, Arch. Ration. Mech. Anal., 247:3 (2023), 40 | DOI | MR | Zbl