Two-dimensional Gavrilov flows
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258
Voir la notice de l'article provenant de la source Math-Net.Ru
A steady solution to the Euler equations is called a Gavrilov flow if the velocity vector is orthogonal to the pressure gradient at any point. Such flows can be localized that yields compactly supported solutions to the Euler equations. Gavrilov flows exist in dimentions 2 and 3. We present a complete description of two-dimensional Gavrilov flows.
Keywords:
gavrilov flow.
Mots-clés : euler equations
Mots-clés : euler equations
@article{SEMR_2024_21_1_a28,
author = {V. A. Sharafutdinov},
title = {Two-dimensional {Gavrilov} flows},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {247--258},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/}
}
V. A. Sharafutdinov. Two-dimensional Gavrilov flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/