Two-dimensional Gavrilov flows
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

A steady solution to the Euler equations is called a Gavrilov flow if the velocity vector is orthogonal to the pressure gradient at any point. Such flows can be localized that yields compactly supported solutions to the Euler equations. Gavrilov flows exist in dimentions 2 and 3. We present a complete description of two-dimensional Gavrilov flows.
Keywords: gavrilov flow.
Mots-clés : euler equations
@article{SEMR_2024_21_1_a28,
     author = {V. A. Sharafutdinov},
     title = {Two-dimensional {Gavrilov} flows},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {247--258},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - Two-dimensional Gavrilov flows
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 247
EP  - 258
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/
LA  - en
ID  - SEMR_2024_21_1_a28
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T Two-dimensional Gavrilov flows
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 247-258
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/
%G en
%F SEMR_2024_21_1_a28
V. A. Sharafutdinov. Two-dimensional Gavrilov flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/