Mots-clés : euler equations
@article{SEMR_2024_21_1_a28,
author = {V. A. Sharafutdinov},
title = {Two-dimensional {Gavrilov} flows},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {247--258},
year = {2024},
volume = {21},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/}
}
V. A. Sharafutdinov. Two-dimensional Gavrilov flows. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 247-258. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a28/
[1] P. Constantin, J. La, V. Vicol, “Remarks on a paper by Gavrilov: Grad-Shafranov equations, sready solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications”, Geom. Funct. Anal., 29:6 (2019), 1773–1793 | DOI | MR | Zbl
[2] A.V. Gavrilov, “A steady Euler flow with compact support”, Geom. Funct. Anal., 29:1 (2019), 190–197 | DOI | MR | Zbl
[3] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Großen, Springer-Verlag, Berlin-Heidelberg-New York, 1968 | DOI | MR | Zbl
[4] V.Yu. Rovenski, V.A. Sharafutdinov, “Steady flows of ideal incompressible fluid with velocity pointwise orthogonal to the pressure gradient”, Arnold Math. J., 2023, arXiv: 2209.14572 | DOI | MR
[5] D. Ruiz, “Symmetry results for compactly supported sready solutions of the 2D Euler equations”, Arch. Ration. Mech. Anal., 247:3 (2023), 40 | DOI | MR | Zbl