@article{SEMR_2024_21_1_a27,
author = {R. V. Brizitskii},
title = {Generalised {Boussinesq} model with variable coefficients},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {213--227},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/}
}
R. V. Brizitskii. Generalised Boussinesq model with variable coefficients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 213-227. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/
[1] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inv. Probl., 13:4 (1997), 995–1013 | DOI | MR | Zbl
[2] G.V. Alekseev, D.A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inv. Ill-Posed Probl., 6:6 (1998), 521–562 | DOI | MR | Zbl
[3] G.V. Alekseev, “Solvability of inverse extremal problems for stationary heat and mass transfer equations”, Sib. Math. J., 42:5 (2001), 811–827 | DOI | MR | Zbl
[4] P.A. Nguyen, J.-P.Raymond, “Control problems for convection-diffusion equations with control localized on manifolds”, ESAIM, Control Optim. Calc. Var., 6 (2001), 467–488 | DOI | MR | Zbl
[5] G.V. Alekseev, D.A. Tereshko, “Two-parameter extremum problems of boundary control for stationary thermal convection equations”, Comp. Math. Math. Phys., 51:9 (2011), 1539–1557 | DOI | MR | Zbl
[6] P.A. Nguyen, J.-P. Raymond, “Pointwise control of the Boussinesq system”, Syst. Control Lett., 60:4 (2011), 249–255 | DOI | MR | Zbl
[7] A.I. Korotkii, D.A. Kovtunov, “Optimal boundary control of a system describing thermal convection”, Proc. Steklov Inst. Math., 272, Suppl. 1 (2011), S74–S100 | DOI | MR | Zbl
[8] R.V. Brizitskii, Zh.Yu. Saritskaya, A.I. Byrganov, “Multiplicative control problems for nonlinear convection-diffusion-reaction equation”, Sib. Èlektron. Math. Izv., 13 (2016), 352–360 | DOI | MR | Zbl
[9] R.V. Brizitskii, V.S. Bystrova, Z.Y. Saritskaia, “Analysis of boundary value and extremum problems for a nonlinear reaction-diffusion-convection equation”, Diff. Equ., 57:5 (2021), 615–629 | DOI | MR | Zbl
[10] R.V. Brizitskii, P.A. Maksimov, “Boundary and extremum problems for the nonlinear reaction-diffusion-convection equation under the Dirichlet condition”, Comp. Math. Math. Phys., 61:6 (2021), 974–986 | DOI | MR | Zbl
[11] E.S. Baranovskii, R.V. Brizitskii, Z.Y. Saritskaia, “Optimal control problems for the reaction-diffusion-convection equation with variable coefficients”, Nonlinear Anal., Real World Appl., 75 (2024), 103979 | DOI | MR | Zbl
[12] A.Y. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 290–298 | DOI | MR | Zbl
[13] A.Y. Chebotarev, A.E. Kovtanyuk, N.D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 262–269 | DOI | MR | Zbl
[14] A.G. Maslovskaya, L.I. Moroz, A.Y. Chebotarev, A.E. Kovtanyuk, “Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105524 | DOI | MR | Zbl
[15] S.A. Lorca, J.L. Boldrini, “Stationary solutions for generalized Boussinesq models”, J. Differ. Equations, 124:2 (1996), 389–406 | DOI | MR | Zbl
[16] T. Kim, “Steady Boussinesq system with mixed boundary conditions including friction conditions”, Appl. Math., Praha, 67:5 (2022), 593–613 | DOI | MR | Zbl
[17] A. Bermúdez, R. Muñoz-Sola, R. Vázquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating”, J. Math. Anal. Appl., 368:2 (2010), 444–468 | DOI | MR | Zbl
[18] E.S. Baranovskii, A.A. Domnich, M.A. Artemov, “Optimal boundary control of non-isothermal viscous fluid flow”, Fluids, 4:3 (2019), 133 | DOI | MR
[19] E.S. Baranovskii, A.A. Domnich, “Model of a nonuniformly heated viscous flow through a bounded domain”, Differ. Equ., 56:3 (2020), 304–314 | DOI | MR | Zbl
[20] E.S. Baranovskii, E. Lenes, E. Mallea-Zepeda, J. Rodriguez, L. Vasquez, “Control problem related to 2D Stokes equations with variable density and viscosity”, Symmetry, 13:11 (2021), 2050 | DOI
[21] E.S. Baranovskii, “Optimal boundary control of the Boussinesq approximation for polymeric fluids”, J. Optim. Theory Appl., 189:2 (2021), 623–645 | DOI | MR | Zbl
[22] R.V. Brizitskii, Z.Y. Saritskaya, R.R. Kravchuk, “Boundary value and extremum problems for generalized Oberbeck-Boussinesq model”, Sib. Èlektron. Math. Izv., 16 (2019), 1215–1232 | DOI | MR | Zbl
[23] R.V. Brizitskii, Z.Y. Saritskaia, “Multiplicative control problems for nonlinear reaction-diffusion-convection model”, J. Dyn. Control Syst., 27:2 (2021), 379–402 | DOI | MR | Zbl
[24] Z.Y. Saritskaia, “Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition”, Sib. Èlektron. Math. Izv., 19:1 (2022), 360–370 http://semr.math.nsc.ru/v19/n1/p360-370.pdf | MR | Zbl
[25] R.V. Brizitskii, Z.Y. Saritskaia, “Analysis of inhomogeneous boundary value problems for generalized Boussinesq model of mass transfer”, J. Dyn. Control Syst., 29:4 (2023), 1809–1828 | DOI | MR | Zbl
[26] A. Belmiloudi, “Robin-type boundary control problems for the nonlinear Boussinesq type equations”, J. Math. Anal. Appl., 273:2 (2002), 428–456 | DOI | MR | Zbl
[27] R. Duan, A. Guo, C. Zhu, “Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity”, J. Differ. Equ., 262:8 (2017), 4314–4335 | DOI | MR | Zbl
[28] J.L. Boldrini, E. Fernández-Cara, M.A. Rojas-Medar, “An optimal control problem for a generalized Boussinesq model: the time dependent case”, Rev. Mat. Complut., 20:2 (2007), 339–366 | DOI | MR | Zbl
[29] Yu. Y, Wu X, Tang Y, “Global well-posedness for the 2D Boussinesq system with variable viscosity and damping”, Math. Methods Appl. Sci., 41:8 (2018), 3044–3061 | DOI | MR | Zbl
[30] O.N. Goncharova, “Unique solvability of a two-dimensional nonstationary problem for the convection equations with temperature-dependent viscosity”, Differ. Equ., 38:2 (2002), 249–258 | DOI | MR | Zbl
[31] S.A. Lorca, J.L. Boldrini, “The initial value problem for a generalized Boussinesq model”, Nonlinear Anal., Theory Methods Appl., 36:4 (1999), 457–480 | DOI | MR | Zbl
[32] G.V. Alekseev, R.V. Brizitskii, “Theoretical analysis of boundary value problems for generalized Boussinesq model of mass transfer with variable coefficients”, Symmetry, 14:12 (2022), 2580 | DOI | MR
[33] E.S. Baranovskii, “Flows of a polymer fluid in domain with impermeable boundaries”, Comput. Math. Math. Phys., 54:10 (2014), 1589–1596 | DOI | MR | Zbl
[34] E.S. Baranovskii, M.A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016 (2016), 9428128 | DOI | MR | Zbl
[35] E.S. Baranovskii, “On flows of Bingham-type fluids with threshold slippage”, Adv. Math. Phys., 2017 (2017), 7548328 | DOI | MR | Zbl
[36] E.S. Baranovskii, “Strong solutions of the incompressible Navier-Stokes-Voigt model”, Mathematics, 8:2 (2020), 181 | DOI
[37] M. Růzǐčka, V. Shelukhin, M.M. dos Santos, “Steady flows of Cosserat-Bingham fluids”, Math. Methods Appl. Sci., 40:7 (2017), 2746–2761 | DOI | MR | Zbl
[38] V.V. Shelukhin, “Thermodynamics of two-phase granular fluids”, J. Non-Newtonian Fluid Mech., 262 (2018), 25–37 | DOI | MR
[39] A.E. Mamontov, D.A. Prokudin, “Solvability of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185 | DOI | MR | Zbl
[40] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat-conducting fluids”, Izv. Math., 85:4 (2021), 755–812 | DOI | MR | Zbl
[41] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | MR | Zbl
[42] E. Mallea-Zepeda, E. Ortega-Torres, “Control problem for a magneto-micropolar flow with mixed boundary conditions for the velocity field”, J. Dyn. Control Syst., 25:4 (2019), 599–618 | DOI | MR | Zbl
[43] V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin etc., 1986 | DOI | MR | Zbl
[44] G.V. Alekseev, Optimization in the stationary problems of the heat-mass transfer and magnetic hydrodynamics, Nauchiy Mir, M., 2010