Generalised Boussinesq model with variable coefficients
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 213-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The global solvability of the boundary value problem for mass transfer equations has been proven, in which the coefficients of mass expansion and reaction nonlinearly depend on the concentration of the substance, and also depend on spatial variables. The mathematical apparatus is adapted to a specific boundary value problem to prove its solvability with minimal requirements for the initial data. Additional properties of the weak solution are established and their applications are discussed.
Keywords: generalized Boussinesq model, Leray–Schauder principle, maximum principle, global solvability, local uniqueness.
@article{SEMR_2024_21_1_a27,
     author = {R. V. Brizitskii},
     title = {Generalised {Boussinesq} model with variable coefficients},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {213--227},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/}
}
TY  - JOUR
AU  - R. V. Brizitskii
TI  - Generalised Boussinesq model with variable coefficients
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 213
EP  - 227
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/
LA  - ru
ID  - SEMR_2024_21_1_a27
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%T Generalised Boussinesq model with variable coefficients
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 213-227
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/
%G ru
%F SEMR_2024_21_1_a27
R. V. Brizitskii. Generalised Boussinesq model with variable coefficients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 213-227. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/