Generalised Boussinesq model with variable coefficients
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 213-227
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The global solvability of the boundary value problem for mass transfer equations has been proven, in which the coefficients of mass expansion and reaction nonlinearly depend on the concentration of the substance, and also depend on spatial variables. The mathematical apparatus is adapted to a specific boundary value problem to prove its solvability with minimal requirements for the initial data. Additional properties of the weak solution are established and their applications are discussed.
Keywords: generalized Boussinesq model, Leray–Schauder principle, maximum principle, global solvability, local uniqueness.
@article{SEMR_2024_21_1_a27,
     author = {R. V. Brizitskii},
     title = {Generalised {Boussinesq} model with variable coefficients},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {213--227},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/}
}
TY  - JOUR
AU  - R. V. Brizitskii
TI  - Generalised Boussinesq model with variable coefficients
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 213
EP  - 227
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/
LA  - ru
ID  - SEMR_2024_21_1_a27
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%T Generalised Boussinesq model with variable coefficients
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 213-227
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/
%G ru
%F SEMR_2024_21_1_a27
R. V. Brizitskii. Generalised Boussinesq model with variable coefficients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 213-227. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a27/

[1] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inv. Probl., 13:4 (1997), 995–1013 | DOI | MR | Zbl

[2] G.V. Alekseev, D.A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inv. Ill-Posed Probl., 6:6 (1998), 521–562 | DOI | MR | Zbl

[3] G.V. Alekseev, “Solvability of inverse extremal problems for stationary heat and mass transfer equations”, Sib. Math. J., 42:5 (2001), 811–827 | DOI | MR | Zbl

[4] P.A. Nguyen, J.-P.Raymond, “Control problems for convection-diffusion equations with control localized on manifolds”, ESAIM, Control Optim. Calc. Var., 6 (2001), 467–488 | DOI | MR | Zbl

[5] G.V. Alekseev, D.A. Tereshko, “Two-parameter extremum problems of boundary control for stationary thermal convection equations”, Comp. Math. Math. Phys., 51:9 (2011), 1539–1557 | DOI | MR | Zbl

[6] P.A. Nguyen, J.-P. Raymond, “Pointwise control of the Boussinesq system”, Syst. Control Lett., 60:4 (2011), 249–255 | DOI | MR | Zbl

[7] A.I. Korotkii, D.A. Kovtunov, “Optimal boundary control of a system describing thermal convection”, Proc. Steklov Inst. Math., 272, Suppl. 1 (2011), S74–S100 | DOI | MR | Zbl

[8] R.V. Brizitskii, Zh.Yu. Saritskaya, A.I. Byrganov, “Multiplicative control problems for nonlinear convection-diffusion-reaction equation”, Sib. Èlektron. Math. Izv., 13 (2016), 352–360 | DOI | MR | Zbl

[9] R.V. Brizitskii, V.S. Bystrova, Z.Y. Saritskaia, “Analysis of boundary value and extremum problems for a nonlinear reaction-diffusion-convection equation”, Diff. Equ., 57:5 (2021), 615–629 | DOI | MR | Zbl

[10] R.V. Brizitskii, P.A. Maksimov, “Boundary and extremum problems for the nonlinear reaction-diffusion-convection equation under the Dirichlet condition”, Comp. Math. Math. Phys., 61:6 (2021), 974–986 | DOI | MR | Zbl

[11] E.S. Baranovskii, R.V. Brizitskii, Z.Y. Saritskaia, “Optimal control problems for the reaction-diffusion-convection equation with variable coefficients”, Nonlinear Anal., Real World Appl., 75 (2024), 103979 | DOI | MR | Zbl

[12] A.Y. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Commun. Nonlinear Sci. Numer. Simul., 57 (2018), 290–298 | DOI | MR | Zbl

[13] A.Y. Chebotarev, A.E. Kovtanyuk, N.D. Botkin, “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Commun. Nonlinear Sci. Numer. Simul., 75 (2019), 262–269 | DOI | MR | Zbl

[14] A.G. Maslovskaya, L.I. Moroz, A.Y. Chebotarev, A.E. Kovtanyuk, “Theoretical and numerical analysis of the Landau-Khalatnikov model of ferroelectric hysteresis”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105524 | DOI | MR | Zbl

[15] S.A. Lorca, J.L. Boldrini, “Stationary solutions for generalized Boussinesq models”, J. Differ. Equations, 124:2 (1996), 389–406 | DOI | MR | Zbl

[16] T. Kim, “Steady Boussinesq system with mixed boundary conditions including friction conditions”, Appl. Math., Praha, 67:5 (2022), 593–613 | DOI | MR | Zbl

[17] A. Bermúdez, R. Muñoz-Sola, R. Vázquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating”, J. Math. Anal. Appl., 368:2 (2010), 444–468 | DOI | MR | Zbl

[18] E.S. Baranovskii, A.A. Domnich, M.A. Artemov, “Optimal boundary control of non-isothermal viscous fluid flow”, Fluids, 4:3 (2019), 133 | DOI | MR

[19] E.S. Baranovskii, A.A. Domnich, “Model of a nonuniformly heated viscous flow through a bounded domain”, Differ. Equ., 56:3 (2020), 304–314 | DOI | MR | Zbl

[20] E.S. Baranovskii, E. Lenes, E. Mallea-Zepeda, J. Rodriguez, L. Vasquez, “Control problem related to 2D Stokes equations with variable density and viscosity”, Symmetry, 13:11 (2021), 2050 | DOI

[21] E.S. Baranovskii, “Optimal boundary control of the Boussinesq approximation for polymeric fluids”, J. Optim. Theory Appl., 189:2 (2021), 623–645 | DOI | MR | Zbl

[22] R.V. Brizitskii, Z.Y. Saritskaya, R.R. Kravchuk, “Boundary value and extremum problems for generalized Oberbeck-Boussinesq model”, Sib. Èlektron. Math. Izv., 16 (2019), 1215–1232 | DOI | MR | Zbl

[23] R.V. Brizitskii, Z.Y. Saritskaia, “Multiplicative control problems for nonlinear reaction-diffusion-convection model”, J. Dyn. Control Syst., 27:2 (2021), 379–402 | DOI | MR | Zbl

[24] Z.Y. Saritskaia, “Boundary value problem for nonlinear mass-transfer equations under Dirichlet condition”, Sib. Èlektron. Math. Izv., 19:1 (2022), 360–370 http://semr.math.nsc.ru/v19/n1/p360-370.pdf | MR | Zbl

[25] R.V. Brizitskii, Z.Y. Saritskaia, “Analysis of inhomogeneous boundary value problems for generalized Boussinesq model of mass transfer”, J. Dyn. Control Syst., 29:4 (2023), 1809–1828 | DOI | MR | Zbl

[26] A. Belmiloudi, “Robin-type boundary control problems for the nonlinear Boussinesq type equations”, J. Math. Anal. Appl., 273:2 (2002), 428–456 | DOI | MR | Zbl

[27] R. Duan, A. Guo, C. Zhu, “Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity”, J. Differ. Equ., 262:8 (2017), 4314–4335 | DOI | MR | Zbl

[28] J.L. Boldrini, E. Fernández-Cara, M.A. Rojas-Medar, “An optimal control problem for a generalized Boussinesq model: the time dependent case”, Rev. Mat. Complut., 20:2 (2007), 339–366 | DOI | MR | Zbl

[29] Yu. Y, Wu X, Tang Y, “Global well-posedness for the 2D Boussinesq system with variable viscosity and damping”, Math. Methods Appl. Sci., 41:8 (2018), 3044–3061 | DOI | MR | Zbl

[30] O.N. Goncharova, “Unique solvability of a two-dimensional nonstationary problem for the convection equations with temperature-dependent viscosity”, Differ. Equ., 38:2 (2002), 249–258 | DOI | MR | Zbl

[31] S.A. Lorca, J.L. Boldrini, “The initial value problem for a generalized Boussinesq model”, Nonlinear Anal., Theory Methods Appl., 36:4 (1999), 457–480 | DOI | MR | Zbl

[32] G.V. Alekseev, R.V. Brizitskii, “Theoretical analysis of boundary value problems for generalized Boussinesq model of mass transfer with variable coefficients”, Symmetry, 14:12 (2022), 2580 | DOI | MR

[33] E.S. Baranovskii, “Flows of a polymer fluid in domain with impermeable boundaries”, Comput. Math. Math. Phys., 54:10 (2014), 1589–1596 | DOI | MR | Zbl

[34] E.S. Baranovskii, M.A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016 (2016), 9428128 | DOI | MR | Zbl

[35] E.S. Baranovskii, “On flows of Bingham-type fluids with threshold slippage”, Adv. Math. Phys., 2017 (2017), 7548328 | DOI | MR | Zbl

[36] E.S. Baranovskii, “Strong solutions of the incompressible Navier-Stokes-Voigt model”, Mathematics, 8:2 (2020), 181 | DOI

[37] M. Růzǐčka, V. Shelukhin, M.M. dos Santos, “Steady flows of Cosserat-Bingham fluids”, Math. Methods Appl. Sci., 40:7 (2017), 2746–2761 | DOI | MR | Zbl

[38] V.V. Shelukhin, “Thermodynamics of two-phase granular fluids”, J. Non-Newtonian Fluid Mech., 262 (2018), 25–37 | DOI | MR

[39] A.E. Mamontov, D.A. Prokudin, “Solvability of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185 | DOI | MR | Zbl

[40] A.E. Mamontov, D.A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-component viscous compressible heat-conducting fluids”, Izv. Math., 85:4 (2021), 755–812 | DOI | MR | Zbl

[41] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | MR | Zbl

[42] E. Mallea-Zepeda, E. Ortega-Torres, “Control problem for a magneto-micropolar flow with mixed boundary conditions for the velocity field”, J. Dyn. Control Syst., 25:4 (2019), 599–618 | DOI | MR | Zbl

[43] V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms, Springer-Verlag, Berlin etc., 1986 | DOI | MR | Zbl

[44] G.V. Alekseev, Optimization in the stationary problems of the heat-mass transfer and magnetic hydrodynamics, Nauchiy Mir, M., 2010