Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 178-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study a Rayleigh-type equation on a semi-infinite cylinder with a Coulomb-type potential. This equation arises in the double-deck boundary layer structure in the problem of flow induced by a uniformly rotating disk with small periodic irregularities on its surface for large Reynolds numbers. Using combined numerical and analytical approach, the existence of a unique solution to the Rayleigh-type equation is proven.
Keywords: existence and uniqueness of solution, Rayleigh-type equation, double-deck structure.
@article{SEMR_2024_21_1_a26,
     author = {R. K. Gaydukov},
     title = {Existence of solution of {Rayleigh-type} equation on semi-infinite cylinder with {Coulomb-type} potential},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {178--187},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/}
}
TY  - JOUR
AU  - R. K. Gaydukov
TI  - Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 178
EP  - 187
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/
LA  - ru
ID  - SEMR_2024_21_1_a26
ER  - 
%0 Journal Article
%A R. K. Gaydukov
%T Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 178-187
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/
%G ru
%F SEMR_2024_21_1_a26
R. K. Gaydukov. Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 178-187. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/

[1] V.Ya. Neiland, “Theory of laminar boundary-layer separation in supersonic flow”, Fluid Dyn., 4 (1969), 33–35 | DOI

[2] A.H. Nayfeh, “Triple-deck structure”, Comp. Fluids, 20:3 (1991), 269–292 | DOI | MR | Zbl

[3] F.T. Smith, “Laminar flow over a small hump on a flat plate”, J. Fluid Mech., 57 (1973), 803–824 | DOI | Zbl

[4] S. Iyer, V. Vicol, “Real analytic local well-posedness for the triple deck”, Commun. Pure Appl. Math., 74:8 (2021), 1641–1684 | DOI | MR | Zbl

[5] V.G. Danilov, R.K. Gaydukov, “Asymptotic multiscale solutions to Navier-Stokes equations with fast oscillating perturbations in boundary layers”, Russ. J. Math. Phys., 29:4 (2022), 431–455 | DOI | MR | Zbl

[6] V.G. Danilov, R.K. Gaydukov, “Asymptotic solutions of flow problems with boundary layer of double-deck structures”, Math. Notes, 112:4 (2022), 523–532 | DOI | MR | Zbl

[7] V.G. Danilov, M.V. Makarova, “Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities”, Russ. J. Math. Phys., 2:1 (1994), 49–56 | MR | Zbl

[8] V.G. Danilov, R.K. Gaydukov, “Double-deck structure of the boundary layer in problems of flow around localized perturbations on a plate”, Math. Notes, 98:4 (2015), 561–571 | DOI | Zbl

[9] R.K. Gaydukov, “Double-deck structure of the boundary layer in the problem of a compressible flow along a plate with small irregularities on the surface”, Eur. J. Mech. B/Fluids, 66 (2017), 102–108 | DOI | MR | Zbl

[10] R.K. Gaydukov, “Double-deck structure in the fluid flow problem over plate with small irregularities of time-dependent shape”, Eur. J. Mech. B/Fluids, 89 (2021), 401–410 | DOI | MR | Zbl

[11] R. Yapalparvi, “Double-deck structure revisited”, Eur. J. Mech. B/Fluids, 31 (2012), 53–70 | DOI | MR | Zbl

[12] T.M.A. El-Mistikawy, “Asymptotic structure incorporating double and triple decks”, ZAMM, Z. Angew. Math. Mech., 89:1 (2009), 38–43 | DOI | MR | Zbl

[13] V.G. Danilov, R.K. Gaydukov, “Double-deck structure of the boundary layer in the problem of flow in an axially symmetric pipe with small irregularities on the wall for large Reynolds numbers”, Russ. J. Math. Phys., 24:1 (2017), 1–18 | DOI | MR | Zbl

[14] R.K. Gaydukov, A.V. Fonareva, “Double-deck structure in the fluid flow induced by a uniformly rotating disk with small symmetric irregularities on its surface”, Eur. J. Mech. B/Fluids, 94 (2022), 50–59 | DOI | MR | Zbl

[15] C. Chicchiero, A. Segalini, S. Camarri, “Triple-deck analysis of the steady flow over a rotating disk with surface roughness”, Phys. Rev. Fluids, 6 (2021), 014103 | DOI

[16] D.I. Borisov, R.K. Gaydukov, “Existence of the stationary solution of a Rayleigh-type equation”, Math. notes, 99:5 (2016), 636–642 | DOI | MR | Zbl

[17] Th. von Kármán, “Über laminare und turbulente Reibung”, ZAMM, 1 (1921), 233–252 | DOI | Zbl

[18] V.G. Levich, Physicochemical hydrodynamics, Prentice-Hall, 1959 | Zbl

[19] L.D. Landau, E.M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford etc, 1987 | MR | Zbl

[20] H. Schlichting, K. Gersten, Boundary-layer theory, Springer, Berlin, 2000 | MR | Zbl

[21] J.D. Pryce, “A test package for Sturm-Liouville solvers”, ACM Trans. Math. Softw., 25:1 (1999), 21–57 | DOI | MR | Zbl