Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 178-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a Rayleigh-type equation on a semi-infinite cylinder with a Coulomb-type potential. This equation arises in the double-deck boundary layer structure in the problem of flow induced by a uniformly rotating disk with small periodic irregularities on its surface for large Reynolds numbers. Using combined numerical and analytical approach, the existence of a unique solution to the Rayleigh-type equation is proven.
Keywords: existence and uniqueness of solution, Rayleigh-type equation, double-deck structure.
@article{SEMR_2024_21_1_a26,
     author = {R. K. Gaydukov},
     title = {Existence of solution of {Rayleigh-type} equation on semi-infinite cylinder with {Coulomb-type} potential},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {178--187},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/}
}
TY  - JOUR
AU  - R. K. Gaydukov
TI  - Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 178
EP  - 187
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/
LA  - ru
ID  - SEMR_2024_21_1_a26
ER  - 
%0 Journal Article
%A R. K. Gaydukov
%T Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 178-187
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/
%G ru
%F SEMR_2024_21_1_a26
R. K. Gaydukov. Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 178-187. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/