@article{SEMR_2024_21_1_a26,
author = {R. K. Gaydukov},
title = {Existence of solution of {Rayleigh-type} equation on semi-infinite cylinder with {Coulomb-type} potential},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {178--187},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/}
}
TY - JOUR AU - R. K. Gaydukov TI - Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 178 EP - 187 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/ LA - ru ID - SEMR_2024_21_1_a26 ER -
%0 Journal Article %A R. K. Gaydukov %T Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 178-187 %V 21 %N 1 %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/ %G ru %F SEMR_2024_21_1_a26
R. K. Gaydukov. Existence of solution of Rayleigh-type equation on semi-infinite cylinder with Coulomb-type potential. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 178-187. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a26/
[1] V.Ya. Neiland, “Theory of laminar boundary-layer separation in supersonic flow”, Fluid Dyn., 4 (1969), 33–35 | DOI
[2] A.H. Nayfeh, “Triple-deck structure”, Comp. Fluids, 20:3 (1991), 269–292 | DOI | MR | Zbl
[3] F.T. Smith, “Laminar flow over a small hump on a flat plate”, J. Fluid Mech., 57 (1973), 803–824 | DOI | Zbl
[4] S. Iyer, V. Vicol, “Real analytic local well-posedness for the triple deck”, Commun. Pure Appl. Math., 74:8 (2021), 1641–1684 | DOI | MR | Zbl
[5] V.G. Danilov, R.K. Gaydukov, “Asymptotic multiscale solutions to Navier-Stokes equations with fast oscillating perturbations in boundary layers”, Russ. J. Math. Phys., 29:4 (2022), 431–455 | DOI | MR | Zbl
[6] V.G. Danilov, R.K. Gaydukov, “Asymptotic solutions of flow problems with boundary layer of double-deck structures”, Math. Notes, 112:4 (2022), 523–532 | DOI | MR | Zbl
[7] V.G. Danilov, M.V. Makarova, “Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities”, Russ. J. Math. Phys., 2:1 (1994), 49–56 | MR | Zbl
[8] V.G. Danilov, R.K. Gaydukov, “Double-deck structure of the boundary layer in problems of flow around localized perturbations on a plate”, Math. Notes, 98:4 (2015), 561–571 | DOI | Zbl
[9] R.K. Gaydukov, “Double-deck structure of the boundary layer in the problem of a compressible flow along a plate with small irregularities on the surface”, Eur. J. Mech. B/Fluids, 66 (2017), 102–108 | DOI | MR | Zbl
[10] R.K. Gaydukov, “Double-deck structure in the fluid flow problem over plate with small irregularities of time-dependent shape”, Eur. J. Mech. B/Fluids, 89 (2021), 401–410 | DOI | MR | Zbl
[11] R. Yapalparvi, “Double-deck structure revisited”, Eur. J. Mech. B/Fluids, 31 (2012), 53–70 | DOI | MR | Zbl
[12] T.M.A. El-Mistikawy, “Asymptotic structure incorporating double and triple decks”, ZAMM, Z. Angew. Math. Mech., 89:1 (2009), 38–43 | DOI | MR | Zbl
[13] V.G. Danilov, R.K. Gaydukov, “Double-deck structure of the boundary layer in the problem of flow in an axially symmetric pipe with small irregularities on the wall for large Reynolds numbers”, Russ. J. Math. Phys., 24:1 (2017), 1–18 | DOI | MR | Zbl
[14] R.K. Gaydukov, A.V. Fonareva, “Double-deck structure in the fluid flow induced by a uniformly rotating disk with small symmetric irregularities on its surface”, Eur. J. Mech. B/Fluids, 94 (2022), 50–59 | DOI | MR | Zbl
[15] C. Chicchiero, A. Segalini, S. Camarri, “Triple-deck analysis of the steady flow over a rotating disk with surface roughness”, Phys. Rev. Fluids, 6 (2021), 014103 | DOI
[16] D.I. Borisov, R.K. Gaydukov, “Existence of the stationary solution of a Rayleigh-type equation”, Math. notes, 99:5 (2016), 636–642 | DOI | MR | Zbl
[17] Th. von Kármán, “Über laminare und turbulente Reibung”, ZAMM, 1 (1921), 233–252 | DOI | Zbl
[18] V.G. Levich, Physicochemical hydrodynamics, Prentice-Hall, 1959 | Zbl
[19] L.D. Landau, E.M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford etc, 1987 | MR | Zbl
[20] H. Schlichting, K. Gersten, Boundary-layer theory, Springer, Berlin, 2000 | MR | Zbl
[21] J.D. Pryce, “A test package for Sturm-Liouville solvers”, ACM Trans. Math. Softw., 25:1 (1999), 21–57 | DOI | MR | Zbl