@article{SEMR_2024_21_1_a25,
author = {Yu. V. Averboukh},
title = {Approximation of deterministic mean field type control systems},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {105--124},
year = {2024},
volume = {21},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a25/}
}
Yu. V. Averboukh. Approximation of deterministic mean field type control systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 105-124. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a25/
[1] N. Ahmed, X. Ding, “Controlled {M}c{K}ean-{V}lasov equation”, Commun. Appl. Anal., 5:2 (2001), 183–206 | MR | Zbl
[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser, Basel, 2005 | MR | Zbl
[3] Y. Averboukh, “Approximate solutions of continuous-time stochastic games”, SIAM J. Control Optim., 54:5 (2016), 2629–2649 | DOI | MR | Zbl
[4] Y. Averboukh, “Viability theorem for deterministic mean field type control systems”, Set-Valued Var. Anal., 26:4 (2018), 993–1008 | DOI | MR | Zbl
[5] Y. Averboukh, “Lattice approximations of the first-order mean field type differential games”, Nonlinear Differ. Equ. Appl., 28:6 (2021), 65 | DOI | MR | Zbl
[6] Y. Averboukh, D. Khlopin, Pontryagin maximum principle for the deterministic mean field type optimal control problem via the lagrangian approach, 2022, arXiv: 2207.01892 | MR | Zbl
[7] Y. Averboukh, A. Marigonda, M. Quincampoix, “Extremal shift rule and viability property for mean field-type control systems”, J. Optim. Theory Appl., 189:1 (2021), 244–270 | DOI | MR | Zbl
[8] Y. V. Averboukh, “A mean field type differential inclusion with upper semicontinuous right-hand side”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 32:4 (2022), 489–501 | DOI | MR | Zbl
[9] E. Bayraktar, A. Cosso, H. Pham, “Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics”, Trans. Am. Math. Soc., 370:3 (2018), 2115–2160 | DOI | MR | Zbl
[10] N. Bellomo, B. Piccoli, A. Tosin, “Modeling crowd dynamics from a complex system viewpoint”, Math. Models Methods Appl. Sci., 22, Suppl. 2 (2012), 1230004 | DOI | MR | Zbl
[11] M. Bivas, M. Quincampoix, “Nonsmooth feedback control for multi-agent dynamics”, Set-Valued Var. Anal., 29:2 (2021), 501–518 | DOI | MR | Zbl
[12] B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework”, J. Differ. Equations, 271 (2021), 594–637 | DOI | MR | Zbl
[13] B. Bonnet, H. Frankowska, “Viability and exponentially stable trajectories for differential inclusions in Wasserstein spaces”, 2022 IEEE 61st Conference on Decision and Control (CDC) (Cancun, Mexico, 2022), 2022, 5086–5091 | DOI | MR
[14] B. Bonnet-Weil, H. Frankowska, Carathéodory theory and a priori estimates for continuity inclusions in the space of probability measures, 2023, arXiv: 2302.00963 | MR | Zbl
[15] R. Buckdahn, B. Djehiche, J. Li, “A general stochastic maximum principle for SDEs of mean-field type”, Appl. Math. Optim., 64:2 (2011), 197–216 | DOI | MR | Zbl
[16] F. Bullo, J. Cortés, S. Martínez, Distributed control of robotic networks: a mathematical approach to motion coordination algorithms, Princeton University Press, Princeton, 2009 | MR | Zbl
[17] R. Carmona, F. Delarue, “Forward-backward stochastic differential equations and controlled {M}c{K}ean–{V}lasov dynamics”, Ann. Probab., 43:5 (2015), 2647–2700 | DOI | MR | Zbl
[18] R.M. Colombo, M. Garavello, M. Lécureux-Mercier, “Non-local crowd dynamics”, C. R. Acad. Sci. Paris Sér. I, Math., 349:13–14 (2011), 769–772 | DOI | MR | Zbl
[19] R.M. Colombo, M.D. Rosini, “Pedestrian flows and non-classical shocks”, Math. Methods Appl. Sci., 28:13 (2005), 1553–1567 | DOI | MR | Zbl
[20] E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of pedestrian dynamics, MS Modeling, Simulation and Applications, 12, Springer, Cham, 2014 | MR | Zbl
[21] C. Dellacherie, P. Meyer, Probabilities and potential, North-Holland Publishing Co., Amsterdam etc., 1978 | MR | Zbl
[22] B. Djehiche, S. Hamadène, “Optimal control and zero-sum stochastic differential game problems of mean-field type”, Appl. Math. Optim., 81:3 (2020), 933–960 | DOI | MR | Zbl
[23] L. Gr{ü}ne, J. Pannek, Nonlinear model predictive control. Theory and algorithms, Springer, London, 2011 | MR | Zbl
[24] C. Jimenez, A. Marigonda, M. Quincampoix, “Optimal control of multiagent systems in the {W}asserstein space”, Calc. Var. Partial Differ. Equ., 59:2 (2020), 58 | DOI | MR | Zbl
[25] V.N. Kolokoltsov, Markov processes, semigroups and generators, De Gruyter, Berlin, 2011 | MR | Zbl
[26] N.N. Krasovskii, A.N. Kotelnikova, “Unification of differential games, generalized solutions of the Hamilton-Jacobi equations, and a stochastic guide”, Differ. Equ., 45:11 (2009), 1653–1668 | DOI | MR | Zbl
[27] N.N. Krasovskii, A.N. Kotelnikova, “An approach-evasion differential game: stochastic guide”, Proc. Steklov Inst. Math., 269:1, Supplement (2010), 191–213 | DOI | MR | Zbl
[28] N.N. Krasovskii, A.N. Kotelnikova, “On a differential interception game”, Proc. Steklov Inst. Math., 268 (2010), 161–206 | DOI | MR | Zbl
[29] N.N. Krasovskii, A.N. Kotelnikova, “Stochastic guide for a time-delay object in a positional differential game”, Proc. Steklov Inst. Math., 277, Supplement 1 (2012), S145–S151 | DOI | MR | Zbl
[30] M. Laurière, O. Pironneau, “Dynamic programming for mean-field type control”, C. R. Math. Acad. Sci. Paris, 352:9 (2014), 707–713 | DOI | MR | Zbl
[31] H.P. McKean, “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Natl. Acad. Sci. U.S.A., 56 (1966), 1907–1911 | DOI | MR | Zbl
[32] H. Pham, X. Wei, “Dynamic programming for optimal control of stochastic {M}c{K}ean-{V}lasov dynamics”, SIAM J. Control Optim., 55:2 (2017), 1069–1101 | DOI | MR | Zbl
[33] H. Pham, X. Wei, “Bellman equation and viscosity solutions for mean-field stochastic control problem”, ESAIM, Control Optim. Calc. Var., 24:1 (2018), 437–461 | DOI | MR | Zbl
[34] N. Pogodaev, “Optimal control of continuity equations”, Nonlinear Differ. Equ. Appl., 23:2 (2016), 21 | DOI | MR | Zbl
[35] A.-S. Sznitman, “Topics in propagation of chaos”, Lecture Notes Math., 1464, Springer, Berlin, 1991, 165–251 | DOI | MR | Zbl
[36] A. Vlasov, “On vibration properties of electron gas”, J. Exp. Theor. Phys., 8:3 (1938), 291–318 | DOI | Zbl
[37] A. Vlasov, Many-particle theory and its application to plasma, Gordon and Breach, New York, 1961 | MR