Approximation of deterministic mean field type control systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 105-124
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the approximation of the deterministic mean field type control system by a mean field Markov chain. It turns out that the dynamics of the distribution in the approximating system is described by a system of ordinary differential equations. Given a strategy for the Markov chain, we explicitly construct a control in the deterministic mean field type control system. Our method is a realization of the model predictive approach. The converse construction is also presented. These results lead to an estimate of the Hausdorff distance between the bundles of motions in the deterministic mean field type control system and the mean field Markov chain. Especially, we pay the attention to the case when one can approximate the bundle of motions in the mean field type system by solutions of a finite systems of ODEs. algebra.
Keywords: mean field type control, bundle of motions, mean field Markov chain, model predictive control.
@article{SEMR_2024_21_1_a25,
     author = {Yu. V. Averboukh},
     title = {Approximation of deterministic mean field type control systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {105--124},
     year = {2024},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a25/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Approximation of deterministic mean field type control systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 105
EP  - 124
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a25/
LA  - en
ID  - SEMR_2024_21_1_a25
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Approximation of deterministic mean field type control systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 105-124
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a25/
%G en
%F SEMR_2024_21_1_a25
Yu. V. Averboukh. Approximation of deterministic mean field type control systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 105-124. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a25/

[1] N. Ahmed, X. Ding, “Controlled {M}c{K}ean-{V}lasov equation”, Commun. Appl. Anal., 5:2 (2001), 183–206 | MR | Zbl

[2] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser, Basel, 2005 | MR | Zbl

[3] Y. Averboukh, “Approximate solutions of continuous-time stochastic games”, SIAM J. Control Optim., 54:5 (2016), 2629–2649 | DOI | MR | Zbl

[4] Y. Averboukh, “Viability theorem for deterministic mean field type control systems”, Set-Valued Var. Anal., 26:4 (2018), 993–1008 | DOI | MR | Zbl

[5] Y. Averboukh, “Lattice approximations of the first-order mean field type differential games”, Nonlinear Differ. Equ. Appl., 28:6 (2021), 65 | DOI | MR | Zbl

[6] Y. Averboukh, D. Khlopin, Pontryagin maximum principle for the deterministic mean field type optimal control problem via the lagrangian approach, 2022, arXiv: 2207.01892 | MR | Zbl

[7] Y. Averboukh, A. Marigonda, M. Quincampoix, “Extremal shift rule and viability property for mean field-type control systems”, J. Optim. Theory Appl., 189:1 (2021), 244–270 | DOI | MR | Zbl

[8] Y. V. Averboukh, “A mean field type differential inclusion with upper semicontinuous right-hand side”, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki, 32:4 (2022), 489–501 | DOI | MR | Zbl

[9] E. Bayraktar, A. Cosso, H. Pham, “Randomized dynamic programming principle and Feynman-Kac representation for optimal control of McKean-Vlasov dynamics”, Trans. Am. Math. Soc., 370:3 (2018), 2115–2160 | DOI | MR | Zbl

[10] N. Bellomo, B. Piccoli, A. Tosin, “Modeling crowd dynamics from a complex system viewpoint”, Math. Models Methods Appl. Sci., 22, Suppl. 2 (2012), 1230004 | DOI | MR | Zbl

[11] M. Bivas, M. Quincampoix, “Nonsmooth feedback control for multi-agent dynamics”, Set-Valued Var. Anal., 29:2 (2021), 501–518 | DOI | MR | Zbl

[12] B. Bonnet, H. Frankowska, “Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework”, J. Differ. Equations, 271 (2021), 594–637 | DOI | MR | Zbl

[13] B. Bonnet, H. Frankowska, “Viability and exponentially stable trajectories for differential inclusions in Wasserstein spaces”, 2022 IEEE 61st Conference on Decision and Control (CDC) (Cancun, Mexico, 2022), 2022, 5086–5091 | DOI | MR

[14] B. Bonnet-Weil, H. Frankowska, Carathéodory theory and a priori estimates for continuity inclusions in the space of probability measures, 2023, arXiv: 2302.00963 | MR | Zbl

[15] R. Buckdahn, B. Djehiche, J. Li, “A general stochastic maximum principle for SDEs of mean-field type”, Appl. Math. Optim., 64:2 (2011), 197–216 | DOI | MR | Zbl

[16] F. Bullo, J. Cortés, S. Martínez, Distributed control of robotic networks: a mathematical approach to motion coordination algorithms, Princeton University Press, Princeton, 2009 | MR | Zbl

[17] R. Carmona, F. Delarue, “Forward-backward stochastic differential equations and controlled {M}c{K}ean–{V}lasov dynamics”, Ann. Probab., 43:5 (2015), 2647–2700 | DOI | MR | Zbl

[18] R.M. Colombo, M. Garavello, M. Lécureux-Mercier, “Non-local crowd dynamics”, C. R. Acad. Sci. Paris Sér. I, Math., 349:13–14 (2011), 769–772 | DOI | MR | Zbl

[19] R.M. Colombo, M.D. Rosini, “Pedestrian flows and non-classical shocks”, Math. Methods Appl. Sci., 28:13 (2005), 1553–1567 | DOI | MR | Zbl

[20] E. Cristiani, B. Piccoli, A. Tosin, Multiscale modeling of pedestrian dynamics, MS Modeling, Simulation and Applications, 12, Springer, Cham, 2014 | MR | Zbl

[21] C. Dellacherie, P. Meyer, Probabilities and potential, North-Holland Publishing Co., Amsterdam etc., 1978 | MR | Zbl

[22] B. Djehiche, S. Hamadène, “Optimal control and zero-sum stochastic differential game problems of mean-field type”, Appl. Math. Optim., 81:3 (2020), 933–960 | DOI | MR | Zbl

[23] L. Gr{ü}ne, J. Pannek, Nonlinear model predictive control. Theory and algorithms, Springer, London, 2011 | MR | Zbl

[24] C. Jimenez, A. Marigonda, M. Quincampoix, “Optimal control of multiagent systems in the {W}asserstein space”, Calc. Var. Partial Differ. Equ., 59:2 (2020), 58 | DOI | MR | Zbl

[25] V.N. Kolokoltsov, Markov processes, semigroups and generators, De Gruyter, Berlin, 2011 | MR | Zbl

[26] N.N. Krasovskii, A.N. Kotelnikova, “Unification of differential games, generalized solutions of the Hamilton-Jacobi equations, and a stochastic guide”, Differ. Equ., 45:11 (2009), 1653–1668 | DOI | MR | Zbl

[27] N.N. Krasovskii, A.N. Kotelnikova, “An approach-evasion differential game: stochastic guide”, Proc. Steklov Inst. Math., 269:1, Supplement (2010), 191–213 | DOI | MR | Zbl

[28] N.N. Krasovskii, A.N. Kotelnikova, “On a differential interception game”, Proc. Steklov Inst. Math., 268 (2010), 161–206 | DOI | MR | Zbl

[29] N.N. Krasovskii, A.N. Kotelnikova, “Stochastic guide for a time-delay object in a positional differential game”, Proc. Steklov Inst. Math., 277, Supplement 1 (2012), S145–S151 | DOI | MR | Zbl

[30] M. Laurière, O. Pironneau, “Dynamic programming for mean-field type control”, C. R. Math. Acad. Sci. Paris, 352:9 (2014), 707–713 | DOI | MR | Zbl

[31] H.P. McKean, “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Natl. Acad. Sci. U.S.A., 56 (1966), 1907–1911 | DOI | MR | Zbl

[32] H. Pham, X. Wei, “Dynamic programming for optimal control of stochastic {M}c{K}ean-{V}lasov dynamics”, SIAM J. Control Optim., 55:2 (2017), 1069–1101 | DOI | MR | Zbl

[33] H. Pham, X. Wei, “Bellman equation and viscosity solutions for mean-field stochastic control problem”, ESAIM, Control Optim. Calc. Var., 24:1 (2018), 437–461 | DOI | MR | Zbl

[34] N. Pogodaev, “Optimal control of continuity equations”, Nonlinear Differ. Equ. Appl., 23:2 (2016), 21 | DOI | MR | Zbl

[35] A.-S. Sznitman, “Topics in propagation of chaos”, Lecture Notes Math., 1464, Springer, Berlin, 1991, 165–251 | DOI | MR | Zbl

[36] A. Vlasov, “On vibration properties of electron gas”, J. Exp. Theor. Phys., 8:3 (1938), 291–318 | DOI | Zbl

[37] A. Vlasov, Many-particle theory and its application to plasma, Gordon and Breach, New York, 1961 | MR