@article{SEMR_2024_21_1_a24,
author = {G. V. Grenkin},
title = {Uniqueness of solution of an inverse problem for a complex heat transfer model},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {98--104},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/}
}
G. V. Grenkin. Uniqueness of solution of an inverse problem for a complex heat transfer model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/
[1] R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modeled by $SP_1$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[2] R. Pinnau, O. Tse, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl
[3] G.V. Grenkin, A.Yu. Chebotarev, “A nonhomogeneous nonstationary complex heat tranfer problem”, Sib. Èlektron. Mat. Izv., 12 (2015), 562–576 | MR | Zbl
[4] G.V. Grenkin, A.Yu. Chebotarev, “Nonstationary problem of free convection with radiative heat transfer”, Comput. Math. Math. Phys., 56:2 (2016), 278–285 | DOI | MR | Zbl
[5] A.E. Kovtanyuk, A.Yu. Chebotarev, “Stationary free convection problem with radiative heat exchange”, Differ. Equ., 50:12 (2014), 1592–1599 | DOI | MR | Zbl
[6] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl
[7] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM, Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl
[8] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl
[9] G.V. Grenkin, A.Yu. Chebotarev, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260 | DOI | MR | Zbl
[10] A.Yu. Chebotarev, A.E. Kovtanyuk, G.V. Grenkin, N.D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comput., 289 (2016), 371–380 | MR | Zbl
[11] G.V. Grenkin, A.Yu. Chebotarev, “Inverse problem for equations of complex heat transfer”, Comput. Math. Math. Phys., 59:8 (2019), 1361–1371 | DOI | MR | Zbl
[12] A.Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 314–327 | DOI | MR | Zbl
[13] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl
[14] A.Yu. Chebotarev, “Inverse problem for equations of complex heat transfer with Fresnel matching conditions”, Comput. Math. Math. Phys., 61:2 (2021), 288–296 | DOI | MR | Zbl
[15] S.G. Pyatkov, “On some inverse problems for elliptic equations and systems”, Sib. Zh. Ind. Mat., 13:4 (2010), 83–96 | MR | Zbl
[16] S.G. Pyatkov, M.V. Uvarova, “On determining the source function in heat and mass transfer problems under integral overdetermination conditions”, J. Appl. Industr. Math., 10:4 (2016), 549–555 | DOI | MR | Zbl
[17] A. Kovtanyuk, A. Chebotarev, V. Turova, I. Sidorenko, R. Lampe, “Inverse problem for a linearized model of oxygen transport in brain”, 2020 Days on Diffraction (DD), 2020, 44–49 | MR
[18] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE constraints, Springer, Dordrecht, 2009 | MR | Zbl
[19] D. Gale, H. Nikaidô, “The Jacobian matrix and global univalence of mappings”, Math. Ann., 159:2 (1965), 81–93 | DOI | MR | Zbl
[20] G.V. Grenkin, “Convergence of Newton's method for equations of complex heat transfer”, Dal'nevost. Mat. Zh., 17:1 (2017), 3–10 | MR | Zbl