Uniqueness of solution of an inverse problem for a complex heat transfer model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The steady-state complex heat transfer model within the $P_1$-approximation of the radiative transfer equation is considered. An inverse problem of reconstructing heat sources intensities with given volume densities from the prescribed values of functionals of heat sources densities on the temperature field calculated without taking account of radiative effects is investigated. The uniqueness of the inverse problem solution is proved.
Keywords: radiative heat transfer, inverse problem, integral overdetermination.
@article{SEMR_2024_21_1_a24,
     author = {G. V. Grenkin},
     title = {Uniqueness of solution of an inverse problem for a complex heat transfer model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {98--104},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - Uniqueness of solution of an inverse problem for a complex heat transfer model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 98
EP  - 104
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/
LA  - ru
ID  - SEMR_2024_21_1_a24
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T Uniqueness of solution of an inverse problem for a complex heat transfer model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 98-104
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/
%G ru
%F SEMR_2024_21_1_a24
G. V. Grenkin. Uniqueness of solution of an inverse problem for a complex heat transfer model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/

[1] R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modeled by $SP_1$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[2] R. Pinnau, O. Tse, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl

[3] G.V. Grenkin, A.Yu. Chebotarev, “A nonhomogeneous nonstationary complex heat tranfer problem”, Sib. Èlektron. Mat. Izv., 12 (2015), 562–576 | MR | Zbl

[4] G.V. Grenkin, A.Yu. Chebotarev, “Nonstationary problem of free convection with radiative heat transfer”, Comput. Math. Math. Phys., 56:2 (2016), 278–285 | DOI | MR | Zbl

[5] A.E. Kovtanyuk, A.Yu. Chebotarev, “Stationary free convection problem with radiative heat exchange”, Differ. Equ., 50:12 (2014), 1592–1599 | DOI | MR | Zbl

[6] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Commun. Nonlinear Sci. Numer. Simul., 20:3 (2015), 776–784 | DOI | MR | Zbl

[7] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM, Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl

[8] A.E. Kovtanyuk, A.Yu. Chebotarev, N.D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl

[9] G.V. Grenkin, A.Yu. Chebotarev, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260 | DOI | MR | Zbl

[10] A.Yu. Chebotarev, A.E. Kovtanyuk, G.V. Grenkin, N.D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Appl. Math. Comput., 289 (2016), 371–380 | MR | Zbl

[11] G.V. Grenkin, A.Yu. Chebotarev, “Inverse problem for equations of complex heat transfer”, Comput. Math. Math. Phys., 59:8 (2019), 1361–1371 | DOI | MR | Zbl

[12] A.Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 314–327 | DOI | MR | Zbl

[13] A.Yu. Chebotarev, G.V. Grenkin, A.E. Kovtanyuk, N.D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl

[14] A.Yu. Chebotarev, “Inverse problem for equations of complex heat transfer with Fresnel matching conditions”, Comput. Math. Math. Phys., 61:2 (2021), 288–296 | DOI | MR | Zbl

[15] S.G. Pyatkov, “On some inverse problems for elliptic equations and systems”, Sib. Zh. Ind. Mat., 13:4 (2010), 83–96 | MR | Zbl

[16] S.G. Pyatkov, M.V. Uvarova, “On determining the source function in heat and mass transfer problems under integral overdetermination conditions”, J. Appl. Industr. Math., 10:4 (2016), 549–555 | DOI | MR | Zbl

[17] A. Kovtanyuk, A. Chebotarev, V. Turova, I. Sidorenko, R. Lampe, “Inverse problem for a linearized model of oxygen transport in brain”, 2020 Days on Diffraction (DD), 2020, 44–49 | MR

[18] M. Hinze, R. Pinnau, M. Ulbrich, S. Ulbrich, Optimization with PDE constraints, Springer, Dordrecht, 2009 | MR | Zbl

[19] D. Gale, H. Nikaidô, “The Jacobian matrix and global univalence of mappings”, Math. Ann., 159:2 (1965), 81–93 | DOI | MR | Zbl

[20] G.V. Grenkin, “Convergence of Newton's method for equations of complex heat transfer”, Dal'nevost. Mat. Zh., 17:1 (2017), 3–10 | MR | Zbl