Uniqueness of solution of an inverse problem for a complex heat transfer model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The steady-state complex heat transfer model within the $P_1$-approximation of the radiative transfer equation is considered. An inverse problem of reconstructing heat sources intensities with given volume densities from the prescribed values of functionals of heat sources densities on the temperature field calculated without taking account of radiative effects is investigated. The uniqueness of the inverse problem solution is proved.
Keywords: radiative heat transfer, inverse problem, integral overdetermination.
@article{SEMR_2024_21_1_a24,
     author = {G. V. Grenkin},
     title = {Uniqueness of solution of an inverse problem for a complex heat transfer model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - Uniqueness of solution of an inverse problem for a complex heat transfer model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 98
EP  - 104
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/
LA  - ru
ID  - SEMR_2024_21_1_a24
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T Uniqueness of solution of an inverse problem for a complex heat transfer model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 98-104
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/
%G ru
%F SEMR_2024_21_1_a24
G. V. Grenkin. Uniqueness of solution of an inverse problem for a complex heat transfer model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/