Uniqueness of solution of an inverse problem for a complex heat transfer model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104
Voir la notice de l'article provenant de la source Math-Net.Ru
The steady-state complex heat transfer model within the $P_1$-approximation of the radiative transfer equation is considered. An inverse problem of reconstructing heat sources intensities with given volume densities from the prescribed values of functionals of heat sources densities on the temperature field calculated without taking account of radiative effects is investigated. The uniqueness of the inverse problem solution is proved.
Keywords:
radiative heat transfer, inverse problem, integral overdetermination.
@article{SEMR_2024_21_1_a24,
author = {G. V. Grenkin},
title = {Uniqueness of solution of an inverse problem for a complex heat transfer model},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {98--104},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/}
}
TY - JOUR AU - G. V. Grenkin TI - Uniqueness of solution of an inverse problem for a complex heat transfer model JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 98 EP - 104 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/ LA - ru ID - SEMR_2024_21_1_a24 ER -
G. V. Grenkin. Uniqueness of solution of an inverse problem for a complex heat transfer model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 98-104. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a24/