Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 17-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with a solid body containing a rigid inclusion with a crack on its boundary. This body is assumed to be hyperelastic; therefore, we describe it within the framework of finite-strain theory. Moreover, we implement a non-interpenetration condition, which does not allow the opposite crack faces to penetrate each other. The main object of our research is energy minimization corresponding to the problem of equilibrium for the described body. By the use of variational methods, it is shown that this problem has a solution. Then we discuss a boundary value problem that is satisfied by the equilibrium solution.
Keywords: crack, rigid inclusion, non-interpenetration condition, contact, hyperelastic material, finite-strain elasticity, energy minimization.
@article{SEMR_2024_21_1_a22,
     author = {A. I. Furtsev},
     title = {Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {17--40},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/}
}
TY  - JOUR
AU  - A. I. Furtsev
TI  - Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 17
EP  - 40
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/
LA  - ru
ID  - SEMR_2024_21_1_a22
ER  - 
%0 Journal Article
%A A. I. Furtsev
%T Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 17-40
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/
%G ru
%F SEMR_2024_21_1_a22
A. I. Furtsev. Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 17-40. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/

[1] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton, 2000 https://static.uni-graz.at/fileadmin/_Persoenliche_Webseite/kovtunenko_victor/kk1.pdf

[2] A.M. Khludnev, A.A. Novotny, J. Sokołowski, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl

[3] A.M. Khludnev, “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech., A, Solids, 29:3 (2010), 392–399 | DOI | MR | Zbl

[4] A.M. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl

[5] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl

[6] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[7] V.V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Tech. Phy., 56:2 (2015), 321–329 | DOI | MR

[8] T. Popova, G.A. Rogerson, “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:4 (2016), 105 | DOI | MR | Zbl

[9] I.V. Fankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Ind. Math., 10:3 (2016), 333–340 | DOI | MR | Zbl

[10] V.A. Kovtunenko, “Invariant energy integrals for the nonlinear crack problem with possible contact of the crack surfaces”, J. Appl. Math. Mech., 67:1 (2003), 99–110 | DOI | MR | Zbl

[11] P.I. Plotnikov, E.M. Rudoy, “Shape sensitivity analysis of energy integrals for bodies with rigid inclusions and cracks”, Dokl. Math., 84:2 (2011), 681–684 | DOI | MR | Zbl

[12] E.M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl

[13] M. Hintermüller, V.A. Kovtunenko, K. Kunisch, “A Papkovich-Neuber-based numerical approach to cracks with contact in 3D”, IMA J. Appl. Math., 74:3 (2009), 325–343 | DOI | MR | Zbl

[14] E.M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, J. App. Ind. Math., 10 (2016), 264–276 | DOI | MR | Zbl

[15] R.V. Namm, G.I. Tsoy, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666 | DOI | MR | Zbl

[16] N.P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 53–62 | MR | Zbl

[17] N.P. Lazarev, “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl

[18] V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl

[19] E. Rudoy, V. Shcherbakov, “First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks”, Appl. Math. Optim., 84:3 (2021), 2775–2802 | DOI | MR | Zbl

[20] J.M.Ball, “Some open problems in elasticity”, Geometry, mechanics, and dynamics, eds. P. Newton, et al., Springer, New York, 2002 | DOI | MR | Zbl

[21] J.M.Ball, “Progress and puzzles in nonlinear elasticity”, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, eds. J. Schröder, P. Neff, Springer, Vienna, 2010, 1–15 | DOI

[22] D. Knees, A. Mielke, “Energy release rate for cracks in finite-strain elasticity”, Math. Methods Appl. Sci., 31:5 (2008), 501–528 | DOI | MR | Zbl

[23] D. Knees, C. Zanini, A. Mielke, “Crack growth in polyconvex materials”, Physica D, 239:15 (2010), 1470–1484 | DOI | MR | Zbl

[24] D. Knees, A. Mielke, C. Zanini, “On the inviscid limit of a model for crack propagation”, Math. Models Methods Appl. Sci., 18:9 (2008), 1529–1569 | DOI | MR | Zbl

[25] G. Dal Maso, G. Lazzaroni, “Quasistatic crack growth in finite elasticity with non-interpenetration”, Ann. Inst. Henri Poincaré, Anal. Non linéaire, 27:1 (2010), 257–290 | DOI | MR | Zbl

[26] S. Almi, G. Dal Maso, R. Toader, “Quasi-static crack growth in hydraulic fracture”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 109 (2014), 301–318 | DOI | MR | Zbl

[27] S. Almi, “Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening”, ESAIM, Control Optim. Calc. Var., 23:3 (2017), 791–826 | DOI | MR | Zbl

[28] A. Giacomini, M. Ponsiglione, “Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials”, Proc. R. Soc. Edinb., Sect. A, Math., 138:5 (2008), 1019–1041 | DOI | MR | Zbl

[29] P. Gussmann, A. Mielke, “Linearized elasticity as Mosco limit of finite elasticity in the presence of cracks”, Adv. Calc. Var., 13:1 (2020), 33–52 | DOI | MR | Zbl

[30] M. Negri, R. Toader, “Scaling in fracture mechanics by Bažant law: From finite to linearized elasticity”, Math. Models Methods Appl. Sci., 25:7 (2015), 1389–1420 | DOI | MR | Zbl

[31] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Nonlinear elasticity with limiting small strain for cracks subject to non-penetration”, Math. Mech. Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl

[32] S. Dumont, F. Lebon, M.L. Raffa, R. Rizzoni, “Towards nonlinear imperfect interface models including micro-cracks and smooth roughness”, Ann. Solid Struct. Mech., 9 (2017), 13–27 | DOI

[33] C. Licht, G. Michaille, “A modelling of elastic adhesive bonded joints”, Adv. Math. Sci. Appl., 7:2 (1997), 711–740 | DOI | MR | Zbl

[34] A.L. Bessoud, F. Krasucki, G. Michaille, “Multi-material with strong interface: Variational modelings”, Asymptotic Anal., 61:1 (2009), 1–19 https://hal.science/hal-00790347/document | DOI | MR | Zbl

[35] N. Kikuchi, J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics, Philadelphia, 1988 https://www.cambridge.org/ru/universitypress/subjects/mathematics/fluid-dynamics-and-solid-mechanics/contact-problems-elasticity-study-variational-inequalities-and-finite-element-methods?format=PB&isbn=9780898714685 | MR | Zbl

[36] H. Houssein, S. Garnotel, F. Hecht, “Frictionless Signorini's contact problem for hyperelastic materials with interior point optimizer”, Acta Appl. Math., 187 (2023), 3 | DOI | MR | Zbl

[37] P.G. Ciarlet, Mathematical elasticity, v. I, Three-dimensional elasticity, North-Holland, Amsterdam etc., 1988 | DOI | MR | Zbl

[38] V.G. Maz'ya, Sobolev spaces. With applications to elliptic partial differential equations, Springer, Berlin, 2011 | DOI | MR | Zbl

[39] P.G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, 2013 https://my.siam.org/Store/Product/viewproduct/?ProductId=24997945 | Zbl

[40] J.M. Ball, “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl

[41] F. Rindler, Calculus of variations, Springer, Cham, 2018 | DOI | MR | Zbl

[42] J.M Ball, J.C Currie, P.J Olver, “Null Lagrangians, weak continuity, and variational problems of arbitrary order”, J. Funct. Anal., 41:2 (1981), 135–174 | DOI | MR | Zbl

[43] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Springer, Berlin, 2007 | DOI | MR | Zbl

[44] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Publishing Inc., Boston etc., 1985 | DOI | MR | Zbl