@article{SEMR_2024_21_1_a22,
author = {A. I. Furtsev},
title = {Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {17--40},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/}
}
TY - JOUR AU - A. I. Furtsev TI - Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 17 EP - 40 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/ LA - ru ID - SEMR_2024_21_1_a22 ER -
A. I. Furtsev. Problem of equilibrium for hyperelastic body with rigid inclusion and non-penetrating crack. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 17-40. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a22/
[1] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton, 2000 https://static.uni-graz.at/fileadmin/_Persoenliche_Webseite/kovtunenko_victor/kk1.pdf
[2] A.M. Khludnev, A.A. Novotny, J. Sokołowski, A. Zochowski, “Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions”, J. Mech. Phys. Solids, 57:10 (2009), 1718–1732 | DOI | MR | Zbl
[3] A.M. Khludnev, “Optimal control of crack growth in elastic body with inclusions”, Eur. J. Mech., A, Solids, 29:3 (2010), 392–399 | DOI | MR | Zbl
[4] A.M. Khludnev, M. Negri, “Optimal rigid inclusion shapes in elastic bodies with cracks”, Z. Angew. Math. Phys., 64:1 (2013), 179–191 | DOI | MR | Zbl
[5] V.A. Kovtunenko, G. Leugering, “A shape-topological control problem for nonlinear crack-defect interaction: the antiplane variational model”, SIAM J. Control Optim., 54:3 (2016), 1329–1351 | DOI | MR | Zbl
[6] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[7] V.V. Shcherbakov, “Choosing an optimal shape of thin rigid inclusions in elastic bodies”, J. Appl. Mech. Tech. Phy., 56:2 (2015), 321–329 | DOI | MR
[8] T. Popova, G.A. Rogerson, “On the problem of a thin rigid inclusion embedded in a Maxwell material”, Z. Angew. Math. Phys., 67:4 (2016), 105 | DOI | MR | Zbl
[9] I.V. Fankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Ind. Math., 10:3 (2016), 333–340 | DOI | MR | Zbl
[10] V.A. Kovtunenko, “Invariant energy integrals for the nonlinear crack problem with possible contact of the crack surfaces”, J. Appl. Math. Mech., 67:1 (2003), 99–110 | DOI | MR | Zbl
[11] P.I. Plotnikov, E.M. Rudoy, “Shape sensitivity analysis of energy integrals for bodies with rigid inclusions and cracks”, Dokl. Math., 84:2 (2011), 681–684 | DOI | MR | Zbl
[12] E.M. Rudoy, “Shape derivative of the energy functional in a problem for a thin rigid inclusion in an elastic body”, Z. Angew. Math. Phys., 66:4 (2015), 1923–1937 | DOI | MR | Zbl
[13] M. Hintermüller, V.A. Kovtunenko, K. Kunisch, “A Papkovich-Neuber-based numerical approach to cracks with contact in 3D”, IMA J. Appl. Math., 74:3 (2009), 325–343 | DOI | MR | Zbl
[14] E.M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a thin delaminated rigid inclusion”, J. App. Ind. Math., 10 (2016), 264–276 | DOI | MR | Zbl
[15] R.V. Namm, G.I. Tsoy, “Solution of a contact elasticity problem with a rigid inclusion”, Comput. Math. Math. Phys., 59:4 (2019), 659–666 | DOI | MR | Zbl
[16] N.P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 53–62 | MR | Zbl
[17] N.P. Lazarev, “Shape sensitivity analysis of the energy integrals for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, Z. Angew. Math. Phys., 66:4 (2015), 2025–2040 | DOI | MR | Zbl
[18] V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl
[19] E. Rudoy, V. Shcherbakov, “First-order shape derivative of the energy for elastic plates with rigid inclusions and interfacial cracks”, Appl. Math. Optim., 84:3 (2021), 2775–2802 | DOI | MR | Zbl
[20] J.M.Ball, “Some open problems in elasticity”, Geometry, mechanics, and dynamics, eds. P. Newton, et al., Springer, New York, 2002 | DOI | MR | Zbl
[21] J.M.Ball, “Progress and puzzles in nonlinear elasticity”, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, eds. J. Schröder, P. Neff, Springer, Vienna, 2010, 1–15 | DOI
[22] D. Knees, A. Mielke, “Energy release rate for cracks in finite-strain elasticity”, Math. Methods Appl. Sci., 31:5 (2008), 501–528 | DOI | MR | Zbl
[23] D. Knees, C. Zanini, A. Mielke, “Crack growth in polyconvex materials”, Physica D, 239:15 (2010), 1470–1484 | DOI | MR | Zbl
[24] D. Knees, A. Mielke, C. Zanini, “On the inviscid limit of a model for crack propagation”, Math. Models Methods Appl. Sci., 18:9 (2008), 1529–1569 | DOI | MR | Zbl
[25] G. Dal Maso, G. Lazzaroni, “Quasistatic crack growth in finite elasticity with non-interpenetration”, Ann. Inst. Henri Poincaré, Anal. Non linéaire, 27:1 (2010), 257–290 | DOI | MR | Zbl
[26] S. Almi, G. Dal Maso, R. Toader, “Quasi-static crack growth in hydraulic fracture”, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 109 (2014), 301–318 | DOI | MR | Zbl
[27] S. Almi, “Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening”, ESAIM, Control Optim. Calc. Var., 23:3 (2017), 791–826 | DOI | MR | Zbl
[28] A. Giacomini, M. Ponsiglione, “Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials”, Proc. R. Soc. Edinb., Sect. A, Math., 138:5 (2008), 1019–1041 | DOI | MR | Zbl
[29] P. Gussmann, A. Mielke, “Linearized elasticity as Mosco limit of finite elasticity in the presence of cracks”, Adv. Calc. Var., 13:1 (2020), 33–52 | DOI | MR | Zbl
[30] M. Negri, R. Toader, “Scaling in fracture mechanics by Bažant law: From finite to linearized elasticity”, Math. Models Methods Appl. Sci., 25:7 (2015), 1389–1420 | DOI | MR | Zbl
[31] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Nonlinear elasticity with limiting small strain for cracks subject to non-penetration”, Math. Mech. Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl
[32] S. Dumont, F. Lebon, M.L. Raffa, R. Rizzoni, “Towards nonlinear imperfect interface models including micro-cracks and smooth roughness”, Ann. Solid Struct. Mech., 9 (2017), 13–27 | DOI
[33] C. Licht, G. Michaille, “A modelling of elastic adhesive bonded joints”, Adv. Math. Sci. Appl., 7:2 (1997), 711–740 | DOI | MR | Zbl
[34] A.L. Bessoud, F. Krasucki, G. Michaille, “Multi-material with strong interface: Variational modelings”, Asymptotic Anal., 61:1 (2009), 1–19 https://hal.science/hal-00790347/document | DOI | MR | Zbl
[35] N. Kikuchi, J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics, Philadelphia, 1988 https://www.cambridge.org/ru/universitypress/subjects/mathematics/fluid-dynamics-and-solid-mechanics/contact-problems-elasticity-study-variational-inequalities-and-finite-element-methods?format=PB&isbn=9780898714685 | MR | Zbl
[36] H. Houssein, S. Garnotel, F. Hecht, “Frictionless Signorini's contact problem for hyperelastic materials with interior point optimizer”, Acta Appl. Math., 187 (2023), 3 | DOI | MR | Zbl
[37] P.G. Ciarlet, Mathematical elasticity, v. I, Three-dimensional elasticity, North-Holland, Amsterdam etc., 1988 | DOI | MR | Zbl
[38] V.G. Maz'ya, Sobolev spaces. With applications to elliptic partial differential equations, Springer, Berlin, 2011 | DOI | MR | Zbl
[39] P.G. Ciarlet, Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, Philadelphia, 2013 https://my.siam.org/Store/Product/viewproduct/?ProductId=24997945 | Zbl
[40] J.M. Ball, “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. Anal., 63 (1977), 337–403 | DOI | MR | Zbl
[41] F. Rindler, Calculus of variations, Springer, Cham, 2018 | DOI | MR | Zbl
[42] J.M Ball, J.C Currie, P.J Olver, “Null Lagrangians, weak continuity, and variational problems of arbitrary order”, J. Funct. Anal., 41:2 (1981), 135–174 | DOI | MR | Zbl
[43] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Springer, Berlin, 2007 | DOI | MR | Zbl
[44] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Publishing Inc., Boston etc., 1985 | DOI | MR | Zbl