Small length circuits in Eulerian orientations of graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 370-382
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.
Mots-clés : Eulerian orientation of graph, circuit
Keywords: tournament, complete bipartite graph, boolean cube.
@article{SEMR_2024_21_1_a20,
     author = {A. L. Perezhogin and I. S. Bykov and S. V. Avgustinovich},
     title = {Small length circuits in {Eulerian} orientations of graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {370--382},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/}
}
TY  - JOUR
AU  - A. L. Perezhogin
AU  - I. S. Bykov
AU  - S. V. Avgustinovich
TI  - Small length circuits in Eulerian orientations of graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 370
EP  - 382
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/
LA  - ru
ID  - SEMR_2024_21_1_a20
ER  - 
%0 Journal Article
%A A. L. Perezhogin
%A I. S. Bykov
%A S. V. Avgustinovich
%T Small length circuits in Eulerian orientations of graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 370-382
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/
%G ru
%F SEMR_2024_21_1_a20
A. L. Perezhogin; I. S. Bykov; S. V. Avgustinovich. Small length circuits in Eulerian orientations of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 370-382. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/

[1] T.E. Kireeva, “Orientation spectra of cubic graphs”, Sib. Èlektron. Mat. Izv., 14 (2017), 703–709 | DOI | MR | Zbl

[2] T.E. Kireeva, “Perfect orientation colorings of cubic graphs”, Sib. Èlektron. Mat. Izv., 15 (2018), 1353–1360 | DOI | MR | Zbl

[3] A.A. Taranenko, “Algebraic properties of perfect structures”, Linear Algebra Appl., 607 (2020), 286–306 | DOI | MR | Zbl

[4] M. Mihail, P. Winkler, “On the number of Eulerian orientations of a graph”, Algorithmica, 16:4-5 (1996), 402–414 | DOI | MR | Zbl

[5] B.D. McKay, “Applications of a technique for labelled enumeration”, Combinatorics, graph theory and computing, Proc. 14th Southeast. Conf. (Boca Raton/Flo. 1983), Congr. Numerantium, 40, 1983, 207–221 | MR | Zbl

[6] A. Schrijver, “Bounds on the number of Eulerian orientations”, Combinatorica, 3 (1983), 375–380 | DOI | MR | Zbl

[7] L.-H. Hsu, C.-K. Lin, Graph theory and interconnection networks, CRC Press, Boca Raton, 2008 | DOI | MR | Zbl