Small length circuits in Eulerian orientations of graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 370-382
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate estimates for number of 3-, 4- and 5-circuits in eulerian tournaments and 4-circuits in eulerian orientations of complete bipartite graphs and hypercubes. By using obtained relations, we prove uniqueness (up to isomorphism) of orientations, which reach maximum number of 4-circuits in all graph families mentioned above.
Mots-clés :
Eulerian orientation of graph, circuit
Keywords: tournament, complete bipartite graph, boolean cube.
Keywords: tournament, complete bipartite graph, boolean cube.
@article{SEMR_2024_21_1_a20,
author = {A. L. Perezhogin and I. S. Bykov and S. V. Avgustinovich},
title = {Small length circuits in {Eulerian} orientations of graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {370--382},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/}
}
TY - JOUR AU - A. L. Perezhogin AU - I. S. Bykov AU - S. V. Avgustinovich TI - Small length circuits in Eulerian orientations of graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 370 EP - 382 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/ LA - ru ID - SEMR_2024_21_1_a20 ER -
%0 Journal Article %A A. L. Perezhogin %A I. S. Bykov %A S. V. Avgustinovich %T Small length circuits in Eulerian orientations of graphs %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2024 %P 370-382 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/ %G ru %F SEMR_2024_21_1_a20
A. L. Perezhogin; I. S. Bykov; S. V. Avgustinovich. Small length circuits in Eulerian orientations of graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 370-382. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a20/