On complexity of solving of equations over graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 62-69
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the computational complexity of the problem of determining the compatibility of systems of equations without constants over an arbitrary fixed finite graph is studied. In this case, the graph is fixed, and the input is an arbitrary system of equations in the graph language without constants. A criterion is given for NP-completeness and polynomial decidability of this problem. Also its generic decidability in polynomial time is proved.
Keywords:
NP-completeness, generic complexity, graphs
Mots-clés : equations.
Mots-clés : equations.
@article{SEMR_2024_21_1_a2,
author = {A. N. Rybalov},
title = {On complexity of solving of equations over graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {62--69},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a2/}
}
A. N. Rybalov. On complexity of solving of equations over graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 62-69. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a2/