Mots-clés : equations.
@article{SEMR_2024_21_1_a2,
author = {A. N. Rybalov},
title = {On complexity of solving of equations over graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {62--69},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a2/}
}
A. N. Rybalov. On complexity of solving of equations over graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 62-69. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a2/
[1] E.Y. Daniyarova, A.G. Myasnikov, V.N. Remeslennikov, Algebraic geometry over algebraic structures, SB RAS, Novosibirsk, 2016 https://ofim.oscsbras.ru/r̃emesl/articles/monography.pdf | MR
[2] P. Erdős, D.J. Kleitman, B.L. Rothschild, “Asymptotic enumeration of $K_n$-free graphs”, Colloq. Int. Teorie Comb. (Roma, 1973), v. II, 1976, 19–27 https://www.renyi.hu/p̃_erdos/1976-03.pdf | MR | Zbl
[3] M. Garey, D. Johnson, Computers and intractability. A guide to the theory of NP-completeness, W.H. Freeman and Company, San Francisco, 1979 https://bohr.wlu.ca/hfan/cp412/references/ChapterOne.pdf | Zbl
[4] P. Hell, “Algorithmic aspects of graph homomorphisms”, Surveys in combinatorics, Proceedings of the 19th British combinatorial conference (2003), Lond. Math. Soc. Lect. Note Ser., 307, ed. Wensley, C.D., Cambridge University Press, Cambridge, 2003, 239–276 https://www.cambridge.org/core/books/abs/surveys-in-combinatorics-2003/algorithmic-aspects-of-graph-homomorphisms/93035364B458D5282B1B19E1AC39CC96 | MR | Zbl
[5] A.V. Ilev, “Decidability of universal theories and axiomatizability of hereditary classes of graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 100–111 | MR
[6] A.V. Ilev, V.N. Remeslennikov, “Study of the compatibility of systems of equations over graphs and finding their general solutions”, Vestnik Omskogo Universiteta, 2017:4(86) (2017), 26–32 https://elib.omsu.ru/issues/68/1344.php
[7] A.V. Il'ev, V.P. Il'ev, “Algorithms for solving systems of equations over various classes of finite graphs”, Prikl. Diskretn. Mat., 53 (2021), 89–102 https://journals.tsu.ru/engine/download.php?id=223284&area=files | DOI | Zbl
[8] A.V. Ilev, “Study of systems of equations over various classes of finite matroids”, Sib. Èlectron. Mat. Izv., 19:2 (2022), 1094–1102 http://semr.math.nsc.ru/v19/n2/p1094-1102.pdf | MR
[9] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity and decision problems in group theory, and random walks”, J. Algebra, 264:2 (2003), 665–694, arXiv: math/0203239 | DOI | MR | Zbl
[10] G.S. Makanin, “The problem of solvability of equations in a free semigroup”, Math. USSR, Sb., 32 (1977), 129–198 | DOI | MR | Zbl
[11] V.A. Roman'kov, “Universal theory of nilpotent groups”, Math. Notes, 25 (1979), 253–258 | DOI | MR | Zbl