The perfect colorings of circulant graphs with a large number of colors
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 188-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite circulant graph with a continuous set of distances is a graph, whose set of vertices is the set of integers, and two vertices $i$ and $j$ are adjacent if $|i-j| \in \{1,2,…,n\}$. We study perfect colorings of such graph with $k$ colors for $k$ at least $3n+3$. A complete description of them is obtained.
Keywords: perfect coloring, $k$-motley fragment.
Mots-clés : infinite circulant graph
@article{SEMR_2024_21_1_a18,
     author = {M. A. Lisitsyna and S. V. Avgustinovich},
     title = {The perfect colorings of circulant graphs with a large number of colors},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {188--195},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a18/}
}
TY  - JOUR
AU  - M. A. Lisitsyna
AU  - S. V. Avgustinovich
TI  - The perfect colorings of circulant graphs with a large number of colors
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 188
EP  - 195
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a18/
LA  - ru
ID  - SEMR_2024_21_1_a18
ER  - 
%0 Journal Article
%A M. A. Lisitsyna
%A S. V. Avgustinovich
%T The perfect colorings of circulant graphs with a large number of colors
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 188-195
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a18/
%G ru
%F SEMR_2024_21_1_a18
M. A. Lisitsyna; S. V. Avgustinovich. The perfect colorings of circulant graphs with a large number of colors. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 188-195. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a18/