First $p$-Steklov eigenvalue under geodesic curvature flow
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 293-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the first nonzero $p$-Steklov eigenvalue on a two-dimensional compact Riemannian manifold with a smooth boundary along the geodesic curvature flow. We prove that the first nonzero $p$-Steklov eigenvalue is nondecreasing if the initial metric has positive geodesic curvature on boundary $\partial M$ and Gaussian curvature is identically equal to zero in $M$ along the un-normalized geodesic curvature flow. An eigenvalue estimation is also obtained along the normalized geodesic curvature flow.
Keywords: geodesic curvature, geodesic curvature flow.
Mots-clés : $p$-Steklov eigenvalue
@article{SEMR_2024_21_1_a17,
     author = {A. Saha and S. Azami and S. K. Hui},
     title = {First $p${-Steklov} eigenvalue under geodesic curvature flow},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {293--306},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/}
}
TY  - JOUR
AU  - A. Saha
AU  - S. Azami
AU  - S. K. Hui
TI  - First $p$-Steklov eigenvalue under geodesic curvature flow
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 293
EP  - 306
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/
LA  - en
ID  - SEMR_2024_21_1_a17
ER  - 
%0 Journal Article
%A A. Saha
%A S. Azami
%A S. K. Hui
%T First $p$-Steklov eigenvalue under geodesic curvature flow
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 293-306
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/
%G en
%F SEMR_2024_21_1_a17
A. Saha; S. Azami; S. K. Hui. First $p$-Steklov eigenvalue under geodesic curvature flow. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 293-306. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/