First $p$-Steklov eigenvalue under geodesic curvature flow
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 293-306
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the first nonzero $p$-Steklov eigenvalue on a two-dimensional compact Riemannian manifold with a smooth boundary along the geodesic curvature flow. We prove that the first nonzero $p$-Steklov eigenvalue is nondecreasing if the initial metric has positive geodesic curvature on boundary $\partial M$ and Gaussian curvature is identically equal to zero in $M$ along the un-normalized geodesic curvature flow. An eigenvalue estimation is also obtained along the normalized geodesic curvature flow.
Keywords:
geodesic curvature, geodesic curvature flow.
Mots-clés : $p$-Steklov eigenvalue
Mots-clés : $p$-Steklov eigenvalue
@article{SEMR_2024_21_1_a17,
author = {A. Saha and S. Azami and S. K. Hui},
title = {First $p${-Steklov} eigenvalue under geodesic curvature flow},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {293--306},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/}
}
TY - JOUR AU - A. Saha AU - S. Azami AU - S. K. Hui TI - First $p$-Steklov eigenvalue under geodesic curvature flow JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 293 EP - 306 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/ LA - en ID - SEMR_2024_21_1_a17 ER -
A. Saha; S. Azami; S. K. Hui. First $p$-Steklov eigenvalue under geodesic curvature flow. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 293-306. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a17/