@article{SEMR_2024_21_1_a11,
author = {A. S. Monastyreva},
title = {Finite rings with acyclic zero-divisor graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {405--416},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a11/}
}
A. S. Monastyreva. Finite rings with acyclic zero-divisor graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 405-416. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a11/
[1] D.F. Anderson, P.S. Livingston, “The zero-divizor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl
[2] S.P. Redmond, “The zero-divisor graph of a non-commutative ring”, Int. J. Commut. Rings, 1:4 (2002), 203–211 | MR | Zbl
[3] N. Bloomfield, C. Wickham, “Local rings with genus two zero divisor graph”, Commum. Algebra, 38:8 (2010), 2965–2980 | DOI | MR | Zbl
[4] N. Bloomfield, “The zero divisor graphs of commutative local rings of order $p^4$ and $p^5$”, Commum. Algebra, 41:2 (2013), 765–775 | DOI | MR | Zbl
[5] E.V. Zhuravlev, A.S. Monastyreva, “Compressed zero-divisor graphs of finite associative rings”, Sib. Math. J., 61:1 (2020), 76–84 | DOI | MR | Zbl
[6] A.S. Monastyreva, “The compressed zero-divisor graphs of order 4”, J. Algebra Appl., 21:9 (2022), 2250179 | DOI | MR | Zbl
[7] A.A. Afanas'ev, A.S. Monastyreva, “Compressed and partially compressed zero-divisor graphs of finite associative rings”, Sib. Math. J., 64:2 (2023), 291–299 | DOI | MR | Zbl
[8] A.S. Monastyreva, “Finite non-nilpotent rings with complete compressed zero-divisor graphs”, Lobachevskii J. Math., 41:9 (2020), 1666–1671 | DOI | MR | Zbl
[9] V.P. Elizarov, Finite rings, Gelios-ARV, Moscow, 2006
[10] E.V. Zhuravlev, A.S. Monastyreva, “On zero-divisor graphs of finite commutative local rings”, Sib. Èlektron. Mat. Izv., 16 (2019), 465–480 | DOI | MR | Zbl
[11] E.V. Zhuravlev, O.A. Filina, “On compressed zero-divisor graphs of finite commutative local rings”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1531–1555 | DOI | MR | Zbl