Mots-clés : morphism
@article{SEMR_2024_21_1_a10,
author = {N. Kh. Kasymov},
title = {Computably separable numbering of locally finitely separable algebras},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {315--346},
year = {2024},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/}
}
N. Kh. Kasymov. Computably separable numbering of locally finitely separable algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 315-346. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/
[1] Yu.L. Ershov, The theory of enumerations, Nauka, M., 1977 | MR
[2] A.I. Mal'tsev, Algebraic systems, Nauka, M., 1970 | MR | Zbl
[3] H. jun. Rogers, Theory of recursive functions and effective computability, Mir, M., 1972 | MR | Zbl
[4] S.S. Goncharov, Yu.L. Ershov, Constructive Models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000 | MR | Zbl
[5] A.I. Mal'tsev, “Constructive algebras. I”, Russ. Math. Surv., 16:3 (1961), 77–129 | DOI | Zbl
[6] N.Kh. Kasymov, “Recursively separable enumerated algebras”, Russ. Math. Surv., 51:3 (1996), 509–538 | DOI | MR | Zbl
[7] N.Kh. Kasymov, R.N. Dadazhanov, F.N. Ibragimov, “Separable algorithmic representations of classical systems and their applications”, Contemporary Mathematics. Fundamental Directions, 67:4 (2021), 707–754 | DOI | MR
[8] N.Kh. Kasymov, “Positive algebras with congruences of finite index”, Algebra Logic, 30:3 (1991), 190–199 | DOI | MR | Zbl
[9] N.Kh. Kasymov, “Positive algebras with Noetherian congruence lattices”, Sib. Math. J., 33:2 (1992), 338–341 | DOI | MR | Zbl
[10] N.Kh. Kasymov, “Positive algebras with countable congruence lattices”, Algebra Logic, 31:1 (1992), 12–23 | DOI | MR | Zbl
[11] J.A. Bergstra, J.V. Tucker, “A characterization of computable data types by means of a finite equational specification method”, Lect. Notes Comput. Sci., 85, 1980, 76–90 | DOI | MR | Zbl
[12] N.Kh. Kasymov, “Algebras with finitely approximable positively representable enrichments”, Algebra Logic, 26:6 (1987), 441–450 | DOI | Zbl
[13] N.Kh. Kasymov, “Enumerated algebras with uniformly recursive-separable classes”, Sib. Math. J., 34:5 (1993), 869–882 | DOI | MR | Zbl
[14] N.Kh. Kasymov, “Homomorphisms onto negative algebras”, Algebra Logic, 31:2 (1992), 81–89 | DOI | MR | Zbl
[15] N.Kh. Kasymov, “Separation axioms and partitions of the set of natural numbers”, Sib. Math. J., 34:3 (1993), 468–471 | DOI | MR | Zbl
[16] N.Kh. Kasymov, “Homomorphisms onto effectively separable algebras”, Sib. Math. J., 57:1 (2016), 36–50 | DOI | MR | Zbl
[17] N.Kh. Kasymov, R.N. Dadazhanov, “Negative dense linear orders”, Sib. Math. J., 58:6 (2017), 1015–1033 | DOI | MR | Zbl
[18] A.S. Morozov, J.K. Truss, “On computable automorphisms of the rational numbers”, J. Symb. Log., 66:3 (2001), 1458–1470 | DOI | MR | Zbl
[19] N.Kh. Kasymov, A.S. Morozov, “Definability of linear orders over negative equivalences”, Algebra Logic, 55:1 (2016), 24–37 | DOI | MR | Zbl
[20] R.N. Dadazhanov, N.Kh. Kasymov, I.A. Khodzhamuratova, “Uniformly computably separable algebras with effectively splittable families of negative congruences”, Sib. Math. J., 63:3 (2022), 466–475 | DOI | MR | Zbl
[21] N.Kh. Kasymov, “Algebras over negative equivalences”, Algebra Logic, 33:1 (1994), 46–48 | DOI | MR | Zbl
[22] N.Kh. Kasymov, A.S. Morozov, “Lower semilattices of separable congruences of numbered algebras”, Sib. Math. J., 64:4 (2023), 864–876 | DOI | MR | Zbl
[23] N.Kh. Kasymov, A.S. Morozov, I.A. Khodzhamuratova, “$T_1$-separable enumarations of subdirectly indecomposable algebras”, Algebra Logic, 60:4 (2021), 263–278 | DOI | MR | Zbl
[24] N.Kh. Kasymov, “The number of Q-congruences in positive algebras”, Algebra Logic, 31:3 (1992), 182–187 | DOI | MR | Zbl
[25] N.Kh. Kasymov, F.N. Ibragimov, “Separable enumerations of division rings and effective embeddability of rings therin”, Sib. Math. J., 60:1 (2019), 62–70 | DOI | MR | Zbl