Computably separable numbering of locally finitely separable algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 315-346
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been establish that the locally finitely separability of any universal algebra represented over a given uniformly computably separable equivalence is equivalent to the immune of the characteristic transversal of this equivalence. Examples are presented that demonstrate the infidelity of this criterion for finitely separable algebras, as well as for computably separable equivalences that are not uniform. It is shown that every infinite and co-infinite set is a characteristic transversal of a computably separable equivalence, over which only finitely approximable algebras are represented.
Keywords: numbered algebra, representation of universal algebra over equivalence and $\eta$-algebra, characteristic transversal of equivalence and numbering, uniformly computably separable numbering, finitely and locally finitely separability.
Mots-clés : morphism
@article{SEMR_2024_21_1_a10,
     author = {N. Kh. Kasymov},
     title = {Computably separable numbering of locally finitely separable algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {315--346},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/}
}
TY  - JOUR
AU  - N. Kh. Kasymov
TI  - Computably separable numbering of locally finitely separable algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 315
EP  - 346
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/
LA  - ru
ID  - SEMR_2024_21_1_a10
ER  - 
%0 Journal Article
%A N. Kh. Kasymov
%T Computably separable numbering of locally finitely separable algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 315-346
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/
%G ru
%F SEMR_2024_21_1_a10
N. Kh. Kasymov. Computably separable numbering of locally finitely separable algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 315-346. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/

[1] Yu.L. Ershov, The theory of enumerations, Nauka, M., 1977 | MR

[2] A.I. Mal'tsev, Algebraic systems, Nauka, M., 1970 | MR | Zbl

[3] H. jun. Rogers, Theory of recursive functions and effective computability, Mir, M., 1972 | MR | Zbl

[4] S.S. Goncharov, Yu.L. Ershov, Constructive Models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000 | MR | Zbl

[5] A.I. Mal'tsev, “Constructive algebras. I”, Russ. Math. Surv., 16:3 (1961), 77–129 | DOI | Zbl

[6] N.Kh. Kasymov, “Recursively separable enumerated algebras”, Russ. Math. Surv., 51:3 (1996), 509–538 | DOI | MR | Zbl

[7] N.Kh. Kasymov, R.N. Dadazhanov, F.N. Ibragimov, “Separable algorithmic representations of classical systems and their applications”, Contemporary Mathematics. Fundamental Directions, 67:4 (2021), 707–754 | DOI | MR

[8] N.Kh. Kasymov, “Positive algebras with congruences of finite index”, Algebra Logic, 30:3 (1991), 190–199 | DOI | MR | Zbl

[9] N.Kh. Kasymov, “Positive algebras with Noetherian congruence lattices”, Sib. Math. J., 33:2 (1992), 338–341 | DOI | MR | Zbl

[10] N.Kh. Kasymov, “Positive algebras with countable congruence lattices”, Algebra Logic, 31:1 (1992), 12–23 | DOI | MR | Zbl

[11] J.A. Bergstra, J.V. Tucker, “A characterization of computable data types by means of a finite equational specification method”, Lect. Notes Comput. Sci., 85, 1980, 76–90 | DOI | MR | Zbl

[12] N.Kh. Kasymov, “Algebras with finitely approximable positively representable enrichments”, Algebra Logic, 26:6 (1987), 441–450 | DOI | Zbl

[13] N.Kh. Kasymov, “Enumerated algebras with uniformly recursive-separable classes”, Sib. Math. J., 34:5 (1993), 869–882 | DOI | MR | Zbl

[14] N.Kh. Kasymov, “Homomorphisms onto negative algebras”, Algebra Logic, 31:2 (1992), 81–89 | DOI | MR | Zbl

[15] N.Kh. Kasymov, “Separation axioms and partitions of the set of natural numbers”, Sib. Math. J., 34:3 (1993), 468–471 | DOI | MR | Zbl

[16] N.Kh. Kasymov, “Homomorphisms onto effectively separable algebras”, Sib. Math. J., 57:1 (2016), 36–50 | DOI | MR | Zbl

[17] N.Kh. Kasymov, R.N. Dadazhanov, “Negative dense linear orders”, Sib. Math. J., 58:6 (2017), 1015–1033 | DOI | MR | Zbl

[18] A.S. Morozov, J.K. Truss, “On computable automorphisms of the rational numbers”, J. Symb. Log., 66:3 (2001), 1458–1470 | DOI | MR | Zbl

[19] N.Kh. Kasymov, A.S. Morozov, “Definability of linear orders over negative equivalences”, Algebra Logic, 55:1 (2016), 24–37 | DOI | MR | Zbl

[20] R.N. Dadazhanov, N.Kh. Kasymov, I.A. Khodzhamuratova, “Uniformly computably separable algebras with effectively splittable families of negative congruences”, Sib. Math. J., 63:3 (2022), 466–475 | DOI | MR | Zbl

[21] N.Kh. Kasymov, “Algebras over negative equivalences”, Algebra Logic, 33:1 (1994), 46–48 | DOI | MR | Zbl

[22] N.Kh. Kasymov, A.S. Morozov, “Lower semilattices of separable congruences of numbered algebras”, Sib. Math. J., 64:4 (2023), 864–876 | DOI | MR | Zbl

[23] N.Kh. Kasymov, A.S. Morozov, I.A. Khodzhamuratova, “$T_1$-separable enumarations of subdirectly indecomposable algebras”, Algebra Logic, 60:4 (2021), 263–278 | DOI | MR | Zbl

[24] N.Kh. Kasymov, “The number of Q-congruences in positive algebras”, Algebra Logic, 31:3 (1992), 182–187 | DOI | MR | Zbl

[25] N.Kh. Kasymov, F.N. Ibragimov, “Separable enumerations of division rings and effective embeddability of rings therin”, Sib. Math. J., 60:1 (2019), 62–70 | DOI | MR | Zbl