Computably separable numbering of locally finitely separable algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 315-346
Voir la notice de l'article provenant de la source Math-Net.Ru
It has been establish that the locally finitely separability of any universal algebra represented over a given uniformly computably separable equivalence is equivalent to the immune of the characteristic transversal of this equivalence. Examples are presented that demonstrate the infidelity of this criterion for finitely separable algebras, as well as for computably separable equivalences that are not uniform. It is shown that every infinite and co-infinite set is a characteristic transversal of a computably separable equivalence, over which only finitely approximable algebras are represented.
Keywords:
numbered algebra, representation of universal algebra over equivalence and $\eta$-algebra, characteristic transversal of equivalence and numbering, uniformly computably separable numbering, finitely and locally finitely separability.
Mots-clés : morphism
Mots-clés : morphism
@article{SEMR_2024_21_1_a10,
author = {N. Kh. Kasymov},
title = {Computably separable numbering of locally finitely separable algebras},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {315--346},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/}
}
TY - JOUR AU - N. Kh. Kasymov TI - Computably separable numbering of locally finitely separable algebras JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2024 SP - 315 EP - 346 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/ LA - ru ID - SEMR_2024_21_1_a10 ER -
N. Kh. Kasymov. Computably separable numbering of locally finitely separable algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 315-346. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a10/