On Mizuhara's construction for endomorphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 41-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Mizuhara's construction for the endomorphs. It is shown that this construction gives almost simple algebras, which are used to construct new examples of simple right-symmetric algebras. To investigate the Mizuhara extensions we give a description of the derivations of the endomorphs constructed on nonunital algebras, which generalizes a result obtained earlier in the unital case.
Keywords: right-symmetric algebra, simple algebra, pre-Lie algebra, endomorph, derivation.
Mots-clés : Mizuhara's construction
@article{SEMR_2024_21_1_a0,
     author = {A. P. Pozhidaev},
     title = {On {Mizuhara's} construction for endomorphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {41--54},
     year = {2024},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a0/}
}
TY  - JOUR
AU  - A. P. Pozhidaev
TI  - On Mizuhara's construction for endomorphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2024
SP  - 41
EP  - 54
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a0/
LA  - ru
ID  - SEMR_2024_21_1_a0
ER  - 
%0 Journal Article
%A A. P. Pozhidaev
%T On Mizuhara's construction for endomorphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2024
%P 41-54
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a0/
%G ru
%F SEMR_2024_21_1_a0
A. P. Pozhidaev. On Mizuhara's construction for endomorphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 21 (2024) no. 1, pp. 41-54. http://geodesic.mathdoc.fr/item/SEMR_2024_21_1_a0/

[1] A. Mizuhara, “On simple left symmetric algebras over a solvable Lie algebra”, Sci. Math. Jpn., 57:2 (2003), 325–337 | MR | Zbl

[2] A.P. Pozhidaev, “On generalized Mizuhara's construction”, Sib. Math. J., 2023 | MR

[3] H. Shima, “Homogenous Hessian manifold”, Ann. Inst. Fourier, 30 (1980), 91–128 | DOI | MR | Zbl

[4] A.P. Pozhidaev, “On endomorphs of right-symmetric algebras”, Sib. Math. J., 61:5 (2020), 859–866 | DOI | MR | Zbl

[5] R. Słowik, “Derivations of rings of infinite matrices”, Commun. Algebra, 43:8 (2015), 3433–3441 | DOI | MR | Zbl