Laguerre expansions of $C-$regularized semigroups Functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1001-1012.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to approximate the exponentially bounded $C-$regularized semigroups function by the Laguerre series, recalling the notions and the results used.
Keywords: $c-$regularized semigroup, $c_{0}-$semigroup.
Mots-clés : laguerre functions
@article{SEMR_2023_20_2_a63,
     author = {Y. Bajjou and A. Blali and A. El Amrani},
     title = {Laguerre expansions of $C-$regularized semigroups {Functions}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1001--1012},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a63/}
}
TY  - JOUR
AU  - Y. Bajjou
AU  - A. Blali
AU  - A. El Amrani
TI  - Laguerre expansions of $C-$regularized semigroups Functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1001
EP  - 1012
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a63/
LA  - en
ID  - SEMR_2023_20_2_a63
ER  - 
%0 Journal Article
%A Y. Bajjou
%A A. Blali
%A A. El Amrani
%T Laguerre expansions of $C-$regularized semigroups Functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1001-1012
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a63/
%G en
%F SEMR_2023_20_2_a63
Y. Bajjou; A. Blali; A. El Amrani. Laguerre expansions of $C-$regularized semigroups Functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1001-1012. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a63/

[1] L. Abadias, P.J. Miana, “$C_{0}-$semigroups and resolvent operators approximated by Laguerre expansions”, J. Approx. Theory, 213 (2017), 1–22 | DOI | MR | Zbl

[2] R. Askey, S. Wainger, “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl

[3] R. deLaubenfels, “$C$-semigroups and the Cauchy problem”, J. Funct. Anal., 111:1 (1993), 44–61 | DOI | MR | Zbl

[4] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Mathematics, 1570, Springer-Verlag, Berlin, 1994 | DOI | MR | Zbl

[5] H.O. Fattorini, “A note on fractional derivatives of semigroups and cosine functions”, Pac. J. Math., 109:2 (1983), 335–347 | DOI | MR | Zbl

[6] M. Kaltenback, F.L. Schwenninger, Generalisations of semigroups of operators in the view of linear relations, Diplomarbeit, Institut für Analysis und Scientic Computing der Technischen Universitat Wien Matr. Nr., No 0625539, Vienna University of Technology, Wien | Zbl

[7] M. Kostić, “$(a,k)$-regularized $C-$resolvent families: regularity and local properties”, Abstr. Appl. Anal., 2009 (2009), 858242 | DOI | MR | Zbl

[8] N.N. Lebedev, Special function and their applications, Prentice Hall, Englewood Cliffs, 1965 | MR | Zbl

[9] M. Li, Q. Zheng, J. Zhang, “Regulrized resolvent famillies”, Taiwanese J. Math., 11:1 (2007), 117–133 | DOI | MR | Zbl

[10] C. Martínez, M. Sanz, L. Marco, “Fractional powers of operators”, J. Math. Soc. Japan, 40:2 (1988), 331–347 | MR | Zbl

[11] M. Mosallanezhad, M. Janfada, “On mixed $C$-semigroups of operators on Banach spaces”, Filomat, 30:10 (2016), 2673–2682 | DOI | MR | Zbl

[12] P. Preda, A. Pogan, C. Preda, “The Perron problem for $C$-semigroups”, Math. J. Okayama Univ., 46 (2004), 141–151 | MR | Zbl

[13] J.A. Shohat, On the developement of functions in series of orthogonal polynomials, The university of Pennsyvania, 1935 | MR

[14] G. Szegő, Orthogonal polynomials, American Mathematical Society, New York, 1939 | Zbl

[15] Q. Zheng, “Controllability of a class of linear systems in Banach spaces”, Proc. Am. Math. Soc., 123:4 (1995), 1241–1251 | DOI | MR | Zbl

[16] Q. Zheng, Y. Zhao, “An analyticity criterion for regularezed semigroups”, Proc. Am. Math. Soc., 130:8 (2002), 2271–2274 | DOI | MR | Zbl