Multidimensional Hermite interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hermite interpolation formulas are based on the interpretation of interpolation nodes as roots of suitable polynomials. Therefore, such formulas belong to the class of algebraic interpolations. The article considers a multidimensional variant of Hermite interpolation, presents a class of algebraic systems of equations for which the Hermite interpolation polynomial is represented by an explicit formula. The theory of multidimensional residues is used as the main tool.
Keywords: grothendieck residue, local algebra.
Mots-clés : interpolation
@article{SEMR_2023_20_2_a62,
     author = {M. E. Durakov and E. K. Leinartas and A. K. Tsikh},
     title = {Multidimensional {Hermite} interpolation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {700--710},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/}
}
TY  - JOUR
AU  - M. E. Durakov
AU  - E. K. Leinartas
AU  - A. K. Tsikh
TI  - Multidimensional Hermite interpolation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 700
EP  - 710
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/
LA  - en
ID  - SEMR_2023_20_2_a62
ER  - 
%0 Journal Article
%A M. E. Durakov
%A E. K. Leinartas
%A A. K. Tsikh
%T Multidimensional Hermite interpolation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 700-710
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/
%G en
%F SEMR_2023_20_2_a62
M. E. Durakov; E. K. Leinartas; A. K. Tsikh. Multidimensional Hermite interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/

[1] D. Alpay, P. Jorgensen, I. Lewkowicz, D. Volok, “A new realization of rational functions, with applications to linear combination interpolation, the Cuntz relations and kernel decompositions”, Complex Var. Elliptic Equ., 61:1 (2016), 42–54 | DOI | MR | Zbl

[2] D. Alpay, A. Yger, “About a non-standard interpolation problem”, Comput. Methods Funct. Theory, 19:1 (2019), 97–115 | DOI | MR | Zbl

[3] D. Alpay, A. Yger, “Cauchy-Weil formula, Schur-Agler type classes, new Hardy spaces of the polydisk and interpolation problems”, J. Math. Anal. Appl., 504:2 (2021), 125437 | DOI | MR | Zbl

[4] C. de Boor, A. Ron, “On multivariate polynomial interpolation”, Constructive Approximation, 6:3 (1990), 287–302 | DOI | MR | Zbl

[5] A. Vidras, A. Yger, “Bergman-Weil expansion for holomorphic functions”, Math. Ann., 382:1-2 (2022), 383–419 | DOI | MR | Zbl

[6] A. Tsikh, Multidimensional residues and their applications, Translations of Mathematical Monographs, 103, American Mathematical Society, Providence, 1992 | DOI | MR | Zbl

[7] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley Sons, New York etc, 1978 | MR | Zbl

[8] B. van der Waerden, Algebra, v. I, Springer-Verlag, New York etc, 1991 | MR | Zbl

[9] L. Aizenberg, A. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Translations of Mathematical Monographs, 58, American Mathematical Society, Providence, 1983 | DOI | MR | Zbl

[10] E. Leinartas, A. Tsikh, “On a multidimentional version of the principal theorem of difference equations with constant coeffitients”, J. Siberian Federal University. Math and Phys.., 15:1 (2022), 125–132 | DOI | MR | Zbl

[11] S. Tajima, K. Nabeshima, “Computing Grothendieck point residues via solving holonomic systems of first order partial differential equations”, Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, ISSAC'21, Association for Computing Machinery, New York, 2021, 361–368 | DOI | MR

[12] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, Princeton, 1968 | MR | Zbl

[13] A. Tsikh, A. Yger, “Residue currents”, J. Math. Sci. (N.Y.), 120:6 (2004), 1916–1971 | DOI | MR | Zbl