Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a62, author = {M. E. Durakov and E. K. Leinartas and A. K. Tsikh}, title = {Multidimensional {Hermite} interpolation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {700--710}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/} }
TY - JOUR AU - M. E. Durakov AU - E. K. Leinartas AU - A. K. Tsikh TI - Multidimensional Hermite interpolation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 700 EP - 710 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/ LA - en ID - SEMR_2023_20_2_a62 ER -
M. E. Durakov; E. K. Leinartas; A. K. Tsikh. Multidimensional Hermite interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/
[1] D. Alpay, P. Jorgensen, I. Lewkowicz, D. Volok, “A new realization of rational functions, with applications to linear combination interpolation, the Cuntz relations and kernel decompositions”, Complex Var. Elliptic Equ., 61:1 (2016), 42–54 | DOI | MR | Zbl
[2] D. Alpay, A. Yger, “About a non-standard interpolation problem”, Comput. Methods Funct. Theory, 19:1 (2019), 97–115 | DOI | MR | Zbl
[3] D. Alpay, A. Yger, “Cauchy-Weil formula, Schur-Agler type classes, new Hardy spaces of the polydisk and interpolation problems”, J. Math. Anal. Appl., 504:2 (2021), 125437 | DOI | MR | Zbl
[4] C. de Boor, A. Ron, “On multivariate polynomial interpolation”, Constructive Approximation, 6:3 (1990), 287–302 | DOI | MR | Zbl
[5] A. Vidras, A. Yger, “Bergman-Weil expansion for holomorphic functions”, Math. Ann., 382:1-2 (2022), 383–419 | DOI | MR | Zbl
[6] A. Tsikh, Multidimensional residues and their applications, Translations of Mathematical Monographs, 103, American Mathematical Society, Providence, 1992 | DOI | MR | Zbl
[7] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley Sons, New York etc, 1978 | MR | Zbl
[8] B. van der Waerden, Algebra, v. I, Springer-Verlag, New York etc, 1991 | MR | Zbl
[9] L. Aizenberg, A. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Translations of Mathematical Monographs, 58, American Mathematical Society, Providence, 1983 | DOI | MR | Zbl
[10] E. Leinartas, A. Tsikh, “On a multidimentional version of the principal theorem of difference equations with constant coeffitients”, J. Siberian Federal University. Math and Phys.., 15:1 (2022), 125–132 | DOI | MR | Zbl
[11] S. Tajima, K. Nabeshima, “Computing Grothendieck point residues via solving holonomic systems of first order partial differential equations”, Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, ISSAC'21, Association for Computing Machinery, New York, 2021, 361–368 | DOI | MR
[12] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Princeton University Press, Princeton, 1968 | MR | Zbl
[13] A. Tsikh, A. Yger, “Residue currents”, J. Math. Sci. (N.Y.), 120:6 (2004), 1916–1971 | DOI | MR | Zbl