Multidimensional Hermite interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hermite interpolation formulas are based on the interpretation of interpolation nodes as roots of suitable polynomials. Therefore, such formulas belong to the class of algebraic interpolations. The article considers a multidimensional variant of Hermite interpolation, presents a class of algebraic systems of equations for which the Hermite interpolation polynomial is represented by an explicit formula. The theory of multidimensional residues is used as the main tool.
Keywords:
grothendieck residue, local algebra.
Mots-clés : interpolation
Mots-clés : interpolation
@article{SEMR_2023_20_2_a62,
author = {M. E. Durakov and E. K. Leinartas and A. K. Tsikh},
title = {Multidimensional {Hermite} interpolation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {700--710},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/}
}
TY - JOUR AU - M. E. Durakov AU - E. K. Leinartas AU - A. K. Tsikh TI - Multidimensional Hermite interpolation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 700 EP - 710 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/ LA - en ID - SEMR_2023_20_2_a62 ER -
M. E. Durakov; E. K. Leinartas; A. K. Tsikh. Multidimensional Hermite interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/