Multidimensional Hermite interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hermite interpolation formulas are based on the interpretation of interpolation nodes as roots of suitable polynomials. Therefore, such formulas belong to the class of algebraic interpolations. The article considers a multidimensional variant of Hermite interpolation, presents a class of algebraic systems of equations for which the Hermite interpolation polynomial is represented by an explicit formula. The theory of multidimensional residues is used as the main tool.
Keywords: grothendieck residue, local algebra.
Mots-clés : interpolation
@article{SEMR_2023_20_2_a62,
     author = {M. E. Durakov and E. K. Leinartas and A. K. Tsikh},
     title = {Multidimensional {Hermite} interpolation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {700--710},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/}
}
TY  - JOUR
AU  - M. E. Durakov
AU  - E. K. Leinartas
AU  - A. K. Tsikh
TI  - Multidimensional Hermite interpolation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 700
EP  - 710
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/
LA  - en
ID  - SEMR_2023_20_2_a62
ER  - 
%0 Journal Article
%A M. E. Durakov
%A E. K. Leinartas
%A A. K. Tsikh
%T Multidimensional Hermite interpolation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 700-710
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/
%G en
%F SEMR_2023_20_2_a62
M. E. Durakov; E. K. Leinartas; A. K. Tsikh. Multidimensional Hermite interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 700-710. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a62/