Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 824-832

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebras of binary isolating formulas are described for $\aleph_0$-categorical $1$-transitive non-primitive weakly circularly minimal theories of convexity rank greater than $1$ having a non-trivial piecewise (non-strictly) monotonic function.
Keywords: weak circular minimality, algebra of binary formulas, $\aleph_0$-categorical theory, circularly ordered structure, convexity rank.
@article{SEMR_2023_20_2_a6,
     author = {B. Sh. Kulpeshov},
     title = {Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {824--832},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/}
}
TY  - JOUR
AU  - B. Sh. Kulpeshov
TI  - Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 824
EP  - 832
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/
LA  - en
ID  - SEMR_2023_20_2_a6
ER  - 
%0 Journal Article
%A B. Sh. Kulpeshov
%T Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 824-832
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/
%G en
%F SEMR_2023_20_2_a6
B. Sh. Kulpeshov. Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 824-832. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/