Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 824-832
Voir la notice de l'article provenant de la source Math-Net.Ru
Algebras of binary isolating formulas are described for $\aleph_0$-categorical $1$-transitive non-primitive weakly circularly minimal theories of convexity rank greater than $1$ having a non-trivial piecewise (non-strictly) monotonic function.
Keywords:
weak circular minimality, algebra of binary formulas, $\aleph_0$-categorical theory, circularly ordered structure, convexity rank.
@article{SEMR_2023_20_2_a6,
author = {B. Sh. Kulpeshov},
title = {Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {824--832},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/}
}
TY - JOUR AU - B. Sh. Kulpeshov TI - Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 824 EP - 832 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/ LA - en ID - SEMR_2023_20_2_a6 ER -
%0 Journal Article %A B. Sh. Kulpeshov %T Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2023 %P 824-832 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/ %G en %F SEMR_2023_20_2_a6
B. Sh. Kulpeshov. Algebras of binary formulas for $\aleph_0$-categorical weakly circularly minimal theories: piecewise monotonic case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 824-832. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a6/