The exact solutions for the flow of liquid polymer with variable discharge in the flat channel with permeable walls
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1537-1551.

Voir la notice de l'article provenant de la source Math-Net.Ru

We have studied the problem of steady-state flow of viscoelastic liquid in the flat channel for the modified Vinogradov–Pokrovskii rheological model. It was shown that the problem has a set of solutions which could be calculated exactly. These type of solutions correspond to the flow with permeable walls and variable discharge along the flat channel. The solutions include the cases of constant and linear pressure gradient in the channel.
Keywords: Vinogradov–Pokrovskii rheological model, steady-state solutions.
Mots-clés : Poiseuille flow
@article{SEMR_2023_20_2_a50,
     author = {R. E. Semenko and G. N. Shukurov},
     title = {The exact solutions for the flow of liquid polymer with variable discharge in the flat channel with permeable walls},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1537--1551},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a50/}
}
TY  - JOUR
AU  - R. E. Semenko
AU  - G. N. Shukurov
TI  - The exact solutions for the flow of liquid polymer with variable discharge in the flat channel with permeable walls
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1537
EP  - 1551
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a50/
LA  - en
ID  - SEMR_2023_20_2_a50
ER  - 
%0 Journal Article
%A R. E. Semenko
%A G. N. Shukurov
%T The exact solutions for the flow of liquid polymer with variable discharge in the flat channel with permeable walls
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1537-1551
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a50/
%G en
%F SEMR_2023_20_2_a50
R. E. Semenko; G. N. Shukurov. The exact solutions for the flow of liquid polymer with variable discharge in the flat channel with permeable walls. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1537-1551. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a50/

[1] A.I. Leonov, A.N. Prokunin, Nonlinear phenomena in flows of viscoelastic polymer fluids, Springer, Berlin, 1994 | DOI

[2] J.G. Oldroyd, “On the formulation of rheological equations of state”, Proc. R. Soc. Lond., Ser. A, 200 (1950), 523–541 | DOI | MR | Zbl

[3] M. Doi, S.F. Edwards, The theory of polymer dynamics, Clarendon, Oxford, 1986

[4] R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids, v. 2, Kinetic theory, Wiley, New York, 1987 | MR

[5] G. Astarita, G. Marrucci, Principles of non-Newtonian fluid mechanics, McGraw-Hill, New York, 1974

[6] V.N. Pokrovskii, The mesoscopic theory of polymer dynamics, 2nd Ed., Springer, London, 2010, 256 pp. | DOI

[7] Yu.A. Altukhov, A.S. Gusev, G.V. Pyshnograi, Introduction into the mesoscopic theory of fluid polymer systems, AltGPA, Barnaul, 2012

[8] S.N. Aristov, O.I. Skul'skii, “Exact solution of the problem of flow of a polymer solution in a plane channel”, J. Engin. Phys. Thermophys., 76 (2003), 577–585 | DOI

[9] T. Hayat, S. Zaib, S. Asghar, A.A. Hendi, “Exact solutions in generalized Oldroyd-B fluid”, Appl. Math. Mech., Engl. Ed., 33:4 (2012), 411–426 | DOI | MR | Zbl

[10] K.R. Rajagopal, R.K. Bhatnagar, “Exact solutions for some simple flows of an Oldroyd-B fluid”, Acta Mech., 113:1-4 (1995), 233–239 | DOI | MR | Zbl

[11] N. Shahid, M. Rana, I. Siddique, “Exact solution for motion of an Oldroyd-B fluid over an infinite flat plate that applies an oscillating shear stress to the fluid”, Bound. Value Probl., 2012, 48 | DOI | MR | Zbl

[12] Yu.L. Kuznetsova, O.I. Skulskiy, G.V. Pyshnograi, “Presure driven flow of a nonlinear viscoelastic fluid in a plane channel”, Computational Continuum Mechanics, 3:2 (2010), 55–69 | DOI

[13] A.M. Blokhin, R.E. Semenko, “Stationary magnetohydrodynamic flows of non-isothermal non-compressible polymer liquid in a flat channel”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:4 (2018), 41–54 | DOI | MR | Zbl

[14] A.M. Blokhin, R.E. Semenko, “Vortex motion of an incompressible polymer liquid in the cylindrical near-axial zone”, Fluid Dyn., 53:2 (2018), 177–188 | DOI | MR | Zbl

[15] A.M. Blokhin, R.E. Semenko, “Search for stationary Poiseuille flows for an incompressible polymer fluid in channels with perforated walls”, J. Appl. Mech. Tech. Phys., 63:1 (2022), 26–33 | DOI | MR | Zbl

[16] N.V. Bambaeva, A.M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comput. Math. Math. Phys., 54:5 (2014), 874–899 | DOI | MR | Zbl

[17] L.D. Landau, E.M. Lifshits, Course of Theoretical Physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, Oxford etc, 1987 | MR | Zbl

[18] A.B. Vatazhin, G.A. Lyubimov, S.A. Regirer, Magnetohydrodynamical flows in the channels, Nauka, M., 1970 | Zbl

[19] N.M. Matveev, Methods of integration of ordinary differential equations, Vysshaya Shkola, M., 1967 | MR | Zbl