Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a45, author = {V. A. Sharafutdinov}, title = {A {Radon} type transform related to the {Euler} equations for ideal fluid}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {880--912}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/} }
TY - JOUR AU - V. A. Sharafutdinov TI - A Radon type transform related to the Euler equations for ideal fluid JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 880 EP - 912 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/ LA - en ID - SEMR_2023_20_2_a45 ER -
V. A. Sharafutdinov. A Radon type transform related to the Euler equations for ideal fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 880-912. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/
[1] P. Constantin, J. La, V. Vicol, “Remarks on a paper by Gavrilov: Grad-Shafranov equations, sready solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications”, Geom. Funct. Anal., 29:6 (2019), 1773–1793 | DOI | MR | Zbl
[2] A. Enciso, D. Peralta-Salas, F. Torres de Lizaur, Quasi-periodic solutions to the incompressible Euler equations in dimensions two and higher, 2022, arXiv: 2209.09812 | MR
[3] A.V. Gavrilov, “A steady Euler flow with compact support”, Geom. Funct. Anal., 29:1 (2019), 190–197 | DOI | MR | Zbl
[4] V. Krishnan, V. Sharafutdinov, “Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas”, Inverse Probl. Imaging, 16:4 (2022), 787–826 | DOI | MR | Zbl
[5] N. Nadirashvili, S. Vlǎduts, “Integral geometry of Euler equations”, Arnold Math. J., 3:3 (2017), 397–421, arXiv: 1608.08850 | DOI | MR | Zbl
[6] N. Nadirashvili, V. Sharafutdinov, S. Vlǎduts, “The John equation in tensor tomography in three-dimensions”, Inverse Probl., 32:10 (2016), 105013, 15 pp. | DOI | MR | Zbl
[7] V.Yu. Rovenski, V.A. Sharafutdinov, “Steady-state flows of ideal incompressible fluid with velocity pointwise orthogonal to the pressure gradient”, Arnold Math. J., 2023 (to appear) , arXiv: 2209.14572
[8] V.A. Sharafutdinov, Integral geometry for tensor fields, VSP, Utrecht, 1994 | MR | Zbl
[9] V. Sharafutdinov, “Orthogonality relations for a stationary flow of ideal fluid”, Sib. Math. J., 59:4 (2018), 731–752 | DOI | MR | Zbl