A Radon type transform related to the Euler equations for ideal fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 880-912
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Nadirashvili – Vladuts transform $\mathcal{N}$ that integrates second rank tensor fields $f$ on ${\mathbb{R}}^n$ over hyperplanes. More precisely, for a hyperplane $P$ and vector $\eta$ parallel to $P$, ${\mathcal{N}}f(P,\eta)$ is the integral of the function $f_{ij}(x)\xi^i\eta^j$ over $P$, where $\xi$ is the unit normal vector to $P$. We prove that, given a vector field $v$, the tensor field $f=v\otimes v$ belongs to the kernel of $\mathcal{N}$ if and only if there exists a function $p$ such that $(v,p)$ is a solution to the Euler equations. Then we study the Nadirashvili – Vladuts potential $w(x,\xi)$ determined by a solution to the Euler equations. The function $w$ solves some 4th order PDE. We describe all solutions to the latter equation.
Keywords:
tensor tomography.
Mots-clés : Euler equations, Nadirashvili – Vladuts transform
Mots-clés : Euler equations, Nadirashvili – Vladuts transform
@article{SEMR_2023_20_2_a45,
author = {V. A. Sharafutdinov},
title = {A {Radon} type transform related to the {Euler} equations for ideal fluid},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {880--912},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/}
}
TY - JOUR AU - V. A. Sharafutdinov TI - A Radon type transform related to the Euler equations for ideal fluid JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 880 EP - 912 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/ LA - en ID - SEMR_2023_20_2_a45 ER -
V. A. Sharafutdinov. A Radon type transform related to the Euler equations for ideal fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 880-912. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/