A Radon type transform related to the Euler equations for ideal fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 880-912

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Nadirashvili – Vladuts transform $\mathcal{N}$ that integrates second rank tensor fields $f$ on ${\mathbb{R}}^n$ over hyperplanes. More precisely, for a hyperplane $P$ and vector $\eta$ parallel to $P$, ${\mathcal{N}}f(P,\eta)$ is the integral of the function $f_{ij}(x)\xi^i\eta^j$ over $P$, where $\xi$ is the unit normal vector to $P$. We prove that, given a vector field $v$, the tensor field $f=v\otimes v$ belongs to the kernel of $\mathcal{N}$ if and only if there exists a function $p$ such that $(v,p)$ is a solution to the Euler equations. Then we study the Nadirashvili – Vladuts potential $w(x,\xi)$ determined by a solution to the Euler equations. The function $w$ solves some 4th order PDE. We describe all solutions to the latter equation.
Keywords: tensor tomography.
Mots-clés : Euler equations, Nadirashvili – Vladuts transform
@article{SEMR_2023_20_2_a45,
     author = {V. A. Sharafutdinov},
     title = {A {Radon} type transform related to the {Euler} equations for ideal fluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {880--912},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/}
}
TY  - JOUR
AU  - V. A. Sharafutdinov
TI  - A Radon type transform related to the Euler equations for ideal fluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 880
EP  - 912
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/
LA  - en
ID  - SEMR_2023_20_2_a45
ER  - 
%0 Journal Article
%A V. A. Sharafutdinov
%T A Radon type transform related to the Euler equations for ideal fluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 880-912
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/
%G en
%F SEMR_2023_20_2_a45
V. A. Sharafutdinov. A Radon type transform related to the Euler equations for ideal fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 880-912. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a45/