Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 711-723.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogenized acoustic equations for a two-phase layered medium with periodic microstructure. The first phase of the medium is an isotropic viscoelastic material and the second one is a viscous compressible fluid. In addition, we assume that all layers are parallel to one of the coordinate planes. By means of solutions of auxiliary cell problems, we show that coefficients and convolution kernels of the homogenized equations depend on the volume fraction of the fluid phase inside the periodicity cell and do not depend on the number of layers and their geometrical position.
Keywords: homogenization, cell problems, layered media.
@article{SEMR_2023_20_2_a42,
     author = {V. V. Shumilova},
     title = {Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {711--723},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a42/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 711
EP  - 723
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a42/
LA  - en
ID  - SEMR_2023_20_2_a42
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 711-723
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a42/
%G en
%F SEMR_2023_20_2_a42
V. V. Shumilova. Homogenized acoustic equations for a layered medium consisting of a viscoelastic material and a viscous compressible fluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 711-723. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a42/

[1] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer, Berlin–Heidelberg, 1980 | MR | Zbl

[2] J. Sanchez-Hubert, “Asymptotic study of the macroscopic behavior of a solid-liquid mixture”, Math. Methods Appl. Sci., 2 (1980), 1–11 | DOI | MR | Zbl

[3] G. Nguetseng, “Asimptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21:6 (1990), 1396–1414 | DOI | MR | Zbl

[4] R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed. I”, Nonlinear Anal., 40:1-8 (2000), 185–212 | DOI | MR | Zbl

[5] Th. Clopeau, J.L. Ferrin, R.P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed. II”, Math. Comput. Modelling, 33:8-9 (2001), 821–841 | DOI | MR | Zbl

[6] A. Meirmanov, “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[7] A.S. Shamaev, V.V. Shumilova, “Homogenization of acoustic equations for a partially perforated viscoelastic solid with viscous liquid”, Doklady Physics, 56:1 (2011), 43–46 | DOI | MR

[8] A.S. Shamaev, V.V. Shumilova, “Homogenization of the acoustic equations for a porous long-memory viscoelastic material filled with a viscous fluid”, Differ. Equ., 48:8 (2012), 1161–1173 | DOI | MR | Zbl

[9] A.S. Shamaev, V.V. Shumilova, “Spectrum of one-dimensional oscillations in the combined stratified medium consisting of a viscoelastic material and a viscous compressible fluid”, Fluid Dyn., 48:1 (2013), 14–22 | DOI | MR | Zbl