Linear and additive perfect codes over skew fields and quasi skew fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1093-1107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a general construction of linear perfect codes over infinite skew fields and quasi skew fields with right (left) unity. A complete classification of such codes over associative skew fields is given. Since the cardinality of the considered skew fields is infinite, the constructed codes have an infinite length. In the previous work, we considered codes over infinite countable fields, the length of which was also countable. We now remove this restriction and assume that the cardinality of the skew field and the length of the codes can be arbitrary (not necessarily countable).
Keywords: skew field, quasi skew field, perfect code, checking matrix, octonions.
Mots-clés : quaternions
@article{SEMR_2023_20_2_a37,
     author = {S. A. Malyugin},
     title = {Linear and additive perfect codes over skew fields and quasi skew fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1093--1107},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a37/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - Linear and additive perfect codes over skew fields and quasi skew fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1093
EP  - 1107
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a37/
LA  - ru
ID  - SEMR_2023_20_2_a37
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T Linear and additive perfect codes over skew fields and quasi skew fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1093-1107
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a37/
%G ru
%F SEMR_2023_20_2_a37
S. A. Malyugin. Linear and additive perfect codes over skew fields and quasi skew fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1093-1107. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a37/

[1] J.H. Conway, D.A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A K Peters, Natick, 2003 | MR | Zbl

[2] P.M. Cohn, Skew field constructions, Cambridge University Press, Cambridge etc, 1977 | MR | Zbl

[3] P.M. Cohn, Skew fields. Theory of general division rings, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[4] S.A. Malyugin, “Linear perfect codes of infinite length over infinite fields”, Sib. Èlectron. Mat. Izv., 17 (2020), 1165–1182 | DOI | MR | Zbl

[5] S.A. Malyugin, “Systematic and nonsystematic perfect codes of infinite length over finite fields”, Sib. Èlectron. Mat. Izv., 16 (2019), 1732–1751 | DOI | MR | Zbl

[6] A.P. Il'inykh, “Quasifields associated with an automorphism of the additive group of a finite field”, Proc. Steklov Inst. Math., 257, Suppl. 1 (2007), S83–S85 | DOI | MR | Zbl

[7] A.A. Albert, “Quasigroups I”, Trans. Am. Math. Soc., 54 (1943), 507–519 | DOI | MR | Zbl

[8] A.G. Kurosh, Lectures on general algebra, Fiz.-Mat. Lit., M., 1962 | MR | Zbl

[9] H. Zassenhaus, “Über endliche Fastkörper”, Abh. Math. Semin. Hambg. Univ., 11 (1935), 187–220 | DOI | MR | Zbl

[10] V.M. Levchuk, O.V. Kravtsova, “Problems on structure of finite quasifields and projective translation planes”, Lobachevskii J. Math., 38:4 (2017), 688–698 | DOI | MR | Zbl

[11] V.M. Levchuk, O.V. Kravtsova, “Questions of the structure of finite near-fields”, Trudy Inst. Mat. Mekh. UrO RAN, 25, no. 4, 2019, 107–117 | DOI | MR

[12] D. Hilbert, Foundations of geometry, B. G. Teubner, Stuttgart, 1999 | MR | Zbl