On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1013-1025

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distribution of the crossing number of a strip with straight parallel boundaries by trajectories of a stochastic process with independent increments (Levy process). For the distribution under study, we give a number of inequalities, as well as asymptotic representations for unlimitedly expanding strip.
Keywords: stationary stochastic process with independent increments (Levy process), number of strip crossings, probabilistic inequalities.
@article{SEMR_2023_20_2_a30,
     author = {V. I. Lotov and V. R. Khodjibaev},
     title = {On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1013--1025},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - V. R. Khodjibaev
TI  - On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1013
EP  - 1025
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/
LA  - ru
ID  - SEMR_2023_20_2_a30
ER  - 
%0 Journal Article
%A V. I. Lotov
%A V. R. Khodjibaev
%T On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1013-1025
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/
%G ru
%F SEMR_2023_20_2_a30
V. I. Lotov; V. R. Khodjibaev. On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1013-1025. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/