On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1013-1025.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distribution of the crossing number of a strip with straight parallel boundaries by trajectories of a stochastic process with independent increments (Levy process). For the distribution under study, we give a number of inequalities, as well as asymptotic representations for unlimitedly expanding strip.
Keywords: stationary stochastic process with independent increments (Levy process), number of strip crossings, probabilistic inequalities.
@article{SEMR_2023_20_2_a30,
     author = {V. I. Lotov and V. R. Khodjibaev},
     title = {On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1013--1025},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - V. R. Khodjibaev
TI  - On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1013
EP  - 1025
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/
LA  - ru
ID  - SEMR_2023_20_2_a30
ER  - 
%0 Journal Article
%A V. I. Lotov
%A V. R. Khodjibaev
%T On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1013-1025
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/
%G ru
%F SEMR_2023_20_2_a30
V. I. Lotov; V. R. Khodjibaev. On the distribution of the crossing number of a strip by trajectories of a stochastic process with independent increments. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1013-1025. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a30/

[1] B.A. Rogozin, “On distributions of functionals related to boundary problems for processes with independent increments”, Theor. Probab. Appl., 11:4 (1966), 580–591 | DOI | MR | Zbl

[2] V.I. Lotov, A.P. L'vov, “Bounds for the number of crossings of a strip by random walk paths”, J. Math. Sci., New York, 230:1 (2018), 112–117 | DOI | MR | Zbl

[3] V.I. Lotov, “On the limit behavior of the distribution of the crossing number of a strip by sample paths of a random walk”, Sib. Math. J., 54:2 (2013), 265–270 | DOI | MR | Zbl

[4] V.I. Lotov, N.G. Orlova, “Asymptotic expansions for the distribution of the crossing number of a strip by sample paths of a random walk”, Sib. Math. J., 45:4 (2004), 680–698 | DOI | MR | Zbl

[5] V.I. Lotov, V.R. Khodzhibaev, “On the number of crossings of a strip for stochastic processes with independent increments”, Sib. Adv. Math., 3:2 (1993), 145–152 | MR | Zbl

[6] V.R. Hodzhibaev, A.A. Atahodzhaev, “Raspredelenie chisla peresechenij polosy dlya sluchajnyh processov s nezavisimymi prirashcheniyami”, Uz. Mat. J., 2010:1 (2010), 150–169

[7] A.A. Mogul'skii, “On the size of the first jump for a process with independent increments”, Theory Probab. Appl., 21 (1977), 470–481 | DOI | Zbl

[8] N.S. Bratijchuk, D.V. Gusak, Granichnye zadachi dlya processov s nezavisimymi prirashcheniyami, Naukova dumka, Kiev, 1990 | Zbl

[9] B.A. Rogozin, “Local behavior of processes with independent increments”, Theor. Probab. Appl., 13:3 (1968), 482–486 | DOI | MR | Zbl

[10] B.A. Rogozin, “Distribution of the maximum of a process with independent increments”, Sib. Math. J., 10 (1970), 989–1010 | DOI | MR | Zbl

[11] V.I. Lotov, V.R. Khodjibayev, “Inequalities in a two-sided boundary crossing problem for stochastic processes”, Sib. Math. J., 62:3 (2021), 455–461 | DOI | MR | Zbl