Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a26, author = {S. O. Sharipov}, title = {On functional limit theorems for branching processes with dependent immigration}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {755--772}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a26/} }
TY - JOUR AU - S. O. Sharipov TI - On functional limit theorems for branching processes with dependent immigration JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 755 EP - 772 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a26/ LA - en ID - SEMR_2023_20_2_a26 ER -
S. O. Sharipov. On functional limit theorems for branching processes with dependent immigration. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 755-772. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a26/
[1] P. Billingsley, Convergence of probability measures, 2nd ed., Wiley, Chichester, 1999 | MR | Zbl
[2] S.N. Ethier, T.G. Kurtz, Markov processes. Characterization and convergence, Wiley, New York etc, 1986 | MR | Zbl
[3] V.V Golomoziy, S.O. Sharipov, “On central limit theorems for branching processes with dependent immigration”, Bulletin of Taras Shevchenko National University of Kyïv Series: Physics and Mathematics, 37 (2020), 7–17 | DOI | Zbl
[4] H. Guo, M. Zhang, “A fluctuation limit theorem for a critical branching process with dependent immigration”, Stat. Probab. Lett., 94 (2014), 29–38 | DOI | MR | Zbl
[5] P. Haccou, P. Jagers, V.A. Vatutin, Branching processes. Variation, growth, and extinction of populations, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[6] J. Jacod, A.N. Shiryaev, Limit theorems for stochastic processes, 2nd ed., Springer, Berlin, 2003 | MR | Zbl
[7] Y.M. Khusanbaev, “Almost critical branching processes and limit theorems”, Ukr. Math. J., 61:1 (2009), 154–163 | DOI | MR | Zbl
[8] Y.M. Khusanbaev, “On asymptotics of branching processes with immigration”, Discrete Math. Appl., 27:2 (2017), 73–80 | DOI | MR | Zbl
[9] Y.M. Khusanbaev, S.O. Sharipov, “Functional limit theorem for critical branching processes with dependent immigration”, Uzb. Math. J., 2017:3 (2017), 149–158 | MR
[10] Y.M. Khusanbaev, S.O. Sharipov, “On the asymptotic behavior of branching processes with stationary immigration”, Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 3:1 (2020), 59–73 | DOI
[11] A.N. Kolmogorov, Y.A. Rozanov, “On strong mixing conditions for stationary Gaussian processes”, Theor. Probab. Appl., 5 (1960), 204–208 | DOI | MR | Zbl
[12] D. Li, M. Zhang, “Limit theorem and parameter estimation for a critical branching process with mixing immigration”, Chin. J. Appl. Probab. Stat., 36:4 (2020), 331–341 | MR | Zbl
[13] S.V. Nagaev, “A limit theorem for branching processes with immigration”, Theory Probab. Appl., 20 (1975), 176–179 | DOI | MR | Zbl
[14] I. Rahimov, “Functional limit theorems for critical processes with immigration”, Adv. Appl. Probab., 39:4 (2007), 1054–1069 | DOI | MR | Zbl
[15] I. Rahimov, “Deterministic approximation of a sequence of nearly critical branching processes”, Stochastic Anal. Appl., 26:5 (2008), 1013–1024 | DOI | MR | Zbl
[16] I.Rahimov, “Approximation of fluctuations in a sequence of nearly critical branching processes”, Stoch. Models, 25:2 (2009), 348–373 | DOI | MR | Zbl
[17] I.Rahimov, “Homogeneous branching processes with non-homogeneous immigration”, Stoch. Qual. Control, 36:2 (2021), 165–183 | DOI | MR | Zbl
[18] S.O. Sharipov, “Deterministic approximation for nearly critical branching processes with dependent immigration”, Uzb. Math. J., 2018:3 (2018), 156–164 | DOI | MR | Zbl
[19] S.O. Sharipov, “Central limit theorem for branching process with immigration”, AIP Conference Proceedings, 2365, 2021, 060020 | DOI | MR
[20] S.O. Sharipov, “On limit theorems for branching processes with dependent immigration”, Global and Stochastic Analysis, 8:3 (2021), 151–160 | MR
[21] S.A. Utev, “Sums of weakly dependent random variables”, Sib. Math. J., 32:4 (1991), 675–690 | DOI | MR | Zbl