Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2023_20_2_a2, author = {S. V. Sudoplatov}, title = {Minimality conditions, topologies, and ranks for spherically ordered theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {600--615}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/} }
TY - JOUR AU - S. V. Sudoplatov TI - Minimality conditions, topologies, and ranks for spherically ordered theories JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2023 SP - 600 EP - 615 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/ LA - en ID - SEMR_2023_20_2_a2 ER -
S. V. Sudoplatov. Minimality conditions, topologies, and ranks for spherically ordered theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 600-615. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/
[1] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford etc, 1963 | MR | Zbl
[2] A.M.W. Glass, Ordered permutation groups, London Math. Soc. Lecture Note, Ser., 55, Cambridge Univ. Press, Cambridge etc., 1981 | MR | Zbl
[3] B.A. Davey, H.A. Priestley, Introduction to lattices and order, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[4] B. Schröder, Ordered sets. An introduction with connections from combinatorics to topology, Birkhäuser, Basel, 2016 | MR | Zbl
[5] J.G. Rosenstein, Linear orderings, Academic Press, New York etc, 1982 | MR | Zbl
[6] V. Novák, “Cyclically ordered sets”, Czech. Math. J., 32:3 (1982), 460–473 | DOI | MR | Zbl
[7] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl
[8] P. Tanović, “Minimal first-order structures”, Ann. Pure Appl. Logic, 162:11 (2011), 948–957 | DOI | MR | Zbl
[9] M. Droste, M. Giraudet, D. Macpherson, “Periodic ordered permutation groups and cyclic orderings”, J. Comb. Theory, Ser. B, 63:2 (1995), 310–321 | DOI | MR | Zbl
[10] J.K. Truss, “On the automorphism group of the countable dense circular order”, Fundam. Math., 204:2 (2009), 97–111 | DOI | MR | Zbl
[11] L.P.D. van den Dries, Tame topology and o-minimal structures, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[12] T.M. Al-shami, M.E. El-Shafei, M. Abo-Elhamayel, “On soft topological ordered spaces”, Journal of King Saud University – Science, 31:4 (2019), 556–566 | DOI
[13] T.M. Al-shami, “Sum of the spaces on ordered setting”, Moroccan J. of Pure and Appl. Anal, 6:2 (2020), 255–265 | DOI | MR
[14] T.M. Al-shami, M. Abo-Elhamayel, “Novel class of crdered separation axioms using limit points”, Appl. Math. Inf. Sci., 14:6 (2020), 1103–1111 | DOI | MR
[15] T.M. Al-shami, “Compactness on soft topological ordered spaces and its application on the information system”, Hindawi J. Math., 2021, 6699092 | MR | Zbl
[16] A. Pillay, C. Steinhorn, “Definable sets in ordered structures I”, Trans. Am. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl
[17] D. Macpherson, D. Marker, C. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl
[18] D. Macpherson, C. Steinhorn, “On variants of $o$-minimality”, Ann. Pure Appl. Logic, 79:2 (1996), 165–209 | DOI | MR | Zbl
[19] C. Toffalori, “Lattice ordered $o$-minimal structures”, Notre Dame J. Formal Logic, 39:4 (1998), 447–463 | DOI | MR | Zbl
[20] R. Wencel, “Small theories of Boolean ordered $o$-minimal structures”, J. Symb. Log., 67:4 (2002), 1385–1390 | DOI | MR | Zbl
[21] Y.R. Baisalov, K.A. Meirembekov, A.T. Nurtazin, “Definably minimal models”, Theory of Models at Kazakhstan, Eco Study, Almaty, 2006, 140–157 | MR
[22] J.T. Baldwin, A.H. Lachlan, “On strongly minimal sets”, J. Symb. Log., 36:1 (1971), 79–96 | DOI | MR | Zbl
[23] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl
[24] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam etc, 1990 | MR | Zbl
[25] W. Hodges, Model theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[26] K. Tent, M. Ziegler, A Course in model theory, Cambridge University Press, Cambridge, 2012 | MR | Zbl
[27] S.V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., New York, 169:5 (2010), 680–695 | DOI | MR | Zbl
[28] R. Deissler, “Minimal and prime models of complete theories of torsion free abelian groups”, Algebra Univers., 9 (1979), 250–265 | DOI | MR | Zbl
[29] S.V. Sudoplatov, “On hypergraphs of minimal and prime models of theories of abelian groups”, Sib. Èlektron. Mat. Izv., 17 (2020), 1137–1154 | DOI | MR | Zbl
[30] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR
[31] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl
[32] M. Bhattacharjee, D. Macpherson, G. Möller, P.M. Neumann, Notes on infinite permutation groups, Lecture Notes in Mathematics, 1698, Springer-Verlag, Berlin et al., 1998 | DOI | MR | Zbl
[33] S.V. Sudoplatov, “Arities and aritizabilities of first-order theories”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 889–901 | MR
[34] S.V. Sudoplatov, “Almost $n$-ary and almost $n$-aritizable theories”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 132–139 | MR
[35] B.Sh. Kulpeshov, S.V. Sudoplatov, “Spherical orders, properties and countable spectra of their theories”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 588–599 | MR
[36] B.S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl
[37] M.J. Edmundo, An introduction to $o$-minimal structures, 2000, arXiv: math/0012051 [math.LO]
[38] B.Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl
[39] B. Herwig, H.D. Macpherson, G. Martin, A. Nurtazin, J.K. Truss, “On $\aleph_0$-categorical weakly $o$-minimal structures”, Ann. Pure Appl. Logic, 101:1 (2000), 65–93 | DOI | MR | Zbl
[40] B.Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl