Minimality conditions, topologies, and ranks for spherically ordered theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 600-615.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of ordered structures is productively studied both in order to classify them and in various applications connected with comparing of objects and information structuring. Important particular kinds of ordered structures are represented by $o$-minimal, weakly $o$-minimal and circularly minimal ones as well as their variations including definable minimality. We show that the well developed powerful theory for $o$-minimality, circular minimality, and definable minimality is naturally spread for the spherical case. Reductions of spherical orders to linear ones, called the linearizations, and back reconstructions, called the spherifications, are examined. Neighbourhoods for spherically ordered structures and their topologies are studied. It is proved that related topological spaces can be $T_0$-spaces, $T_1$-spaces and Hausdorff ones. These cases are characterized by the cardinality estimates of the universe. Definably minimal linear orders, their definably minimal extensions and restrictions as well as spherical ones are described. The notion of convexity rank is generalized for spherically ordered theories, and values for the convexity rank are realized in weakly spherically minimal theories which are countably categorical.
Keywords: spherical order, weak spherical minimality, definable minimality, topology, convexity rank.
@article{SEMR_2023_20_2_a2,
     author = {S. V. Sudoplatov},
     title = {Minimality conditions, topologies, and ranks for spherically ordered theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {600--615},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Minimality conditions, topologies, and ranks for spherically ordered theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 600
EP  - 615
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/
LA  - en
ID  - SEMR_2023_20_2_a2
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Minimality conditions, topologies, and ranks for spherically ordered theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 600-615
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/
%G en
%F SEMR_2023_20_2_a2
S. V. Sudoplatov. Minimality conditions, topologies, and ranks for spherically ordered theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 600-615. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a2/

[1] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford etc, 1963 | MR | Zbl

[2] A.M.W. Glass, Ordered permutation groups, London Math. Soc. Lecture Note, Ser., 55, Cambridge Univ. Press, Cambridge etc., 1981 | MR | Zbl

[3] B.A. Davey, H.A. Priestley, Introduction to lattices and order, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[4] B. Schröder, Ordered sets. An introduction with connections from combinatorics to topology, Birkhäuser, Basel, 2016 | MR | Zbl

[5] J.G. Rosenstein, Linear orderings, Academic Press, New York etc, 1982 | MR | Zbl

[6] V. Novák, “Cyclically ordered sets”, Czech. Math. J., 32:3 (1982), 460–473 | DOI | MR | Zbl

[7] B.Sh. Kulpeshov, H.D. Macpherson, “Minimality conditions on circularly ordered structures”, Math. Log. Q., 51:4 (2005), 377–399 | DOI | MR | Zbl

[8] P. Tanović, “Minimal first-order structures”, Ann. Pure Appl. Logic, 162:11 (2011), 948–957 | DOI | MR | Zbl

[9] M. Droste, M. Giraudet, D. Macpherson, “Periodic ordered permutation groups and cyclic orderings”, J. Comb. Theory, Ser. B, 63:2 (1995), 310–321 | DOI | MR | Zbl

[10] J.K. Truss, “On the automorphism group of the countable dense circular order”, Fundam. Math., 204:2 (2009), 97–111 | DOI | MR | Zbl

[11] L.P.D. van den Dries, Tame topology and o-minimal structures, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[12] T.M. Al-shami, M.E. El-Shafei, M. Abo-Elhamayel, “On soft topological ordered spaces”, Journal of King Saud University – Science, 31:4 (2019), 556–566 | DOI

[13] T.M. Al-shami, “Sum of the spaces on ordered setting”, Moroccan J. of Pure and Appl. Anal, 6:2 (2020), 255–265 | DOI | MR

[14] T.M. Al-shami, M. Abo-Elhamayel, “Novel class of crdered separation axioms using limit points”, Appl. Math. Inf. Sci., 14:6 (2020), 1103–1111 | DOI | MR

[15] T.M. Al-shami, “Compactness on soft topological ordered spaces and its application on the information system”, Hindawi J. Math., 2021, 6699092 | MR | Zbl

[16] A. Pillay, C. Steinhorn, “Definable sets in ordered structures I”, Trans. Am. Math. Soc., 295 (1986), 565–592 | DOI | MR | Zbl

[17] D. Macpherson, D. Marker, C. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[18] D. Macpherson, C. Steinhorn, “On variants of $o$-minimality”, Ann. Pure Appl. Logic, 79:2 (1996), 165–209 | DOI | MR | Zbl

[19] C. Toffalori, “Lattice ordered $o$-minimal structures”, Notre Dame J. Formal Logic, 39:4 (1998), 447–463 | DOI | MR | Zbl

[20] R. Wencel, “Small theories of Boolean ordered $o$-minimal structures”, J. Symb. Log., 67:4 (2002), 1385–1390 | DOI | MR | Zbl

[21] Y.R. Baisalov, K.A. Meirembekov, A.T. Nurtazin, “Definably minimal models”, Theory of Models at Kazakhstan, Eco Study, Almaty, 2006, 140–157 | MR

[22] J.T. Baldwin, A.H. Lachlan, “On strongly minimal sets”, J. Symb. Log., 36:1 (1971), 79–96 | DOI | MR | Zbl

[23] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989 | MR | Zbl

[24] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam etc, 1990 | MR | Zbl

[25] W. Hodges, Model theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[26] K. Tent, M. Ziegler, A Course in model theory, Cambridge University Press, Cambridge, 2012 | MR | Zbl

[27] S.V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sci., New York, 169:5 (2010), 680–695 | DOI | MR | Zbl

[28] R. Deissler, “Minimal and prime models of complete theories of torsion free abelian groups”, Algebra Univers., 9 (1979), 250–265 | DOI | MR | Zbl

[29] S.V. Sudoplatov, “On hypergraphs of minimal and prime models of theories of abelian groups”, Sib. Èlektron. Mat. Izv., 17 (2020), 1137–1154 | DOI | MR | Zbl

[30] A.B. Altaeva, B.Sh. Kulpeshov, “On almost binary weakly circularly minimal structures”, Bulletin of Karaganda University, Mathematics, 78:2 (2015), 74–82 | MR

[31] B.Sh. Kulpeshov, “On almost binarity in weakly circularly minimal structures”, Eurasian Math. J., 7:2 (2016), 38–49 | MR | Zbl

[32] M. Bhattacharjee, D. Macpherson, G. Möller, P.M. Neumann, Notes on infinite permutation groups, Lecture Notes in Mathematics, 1698, Springer-Verlag, Berlin et al., 1998 | DOI | MR | Zbl

[33] S.V. Sudoplatov, “Arities and aritizabilities of first-order theories”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 889–901 | MR

[34] S.V. Sudoplatov, “Almost $n$-ary and almost $n$-aritizable theories”, Sib. Èlektron. Mat. Izv., 20:1 (2023), 132–139 | MR

[35] B.Sh. Kulpeshov, S.V. Sudoplatov, “Spherical orders, properties and countable spectra of their theories”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 588–599 | MR

[36] B.S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[37] M.J. Edmundo, An introduction to $o$-minimal structures, 2000, arXiv: math/0012051 [math.LO]

[38] B.Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[39] B. Herwig, H.D. Macpherson, G. Martin, A. Nurtazin, J.K. Truss, “On $\aleph_0$-categorical weakly $o$-minimal structures”, Ann. Pure Appl. Logic, 101:1 (2000), 65–93 | DOI | MR | Zbl

[40] B.Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | MR | Zbl