On submaximal ultraclones of self-dual hyperfunctions of rank~$2$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1374-1380.

Voir la notice de l'article provenant de la source Math-Net.Ru

In article the elements of the lattice of ultraclones are considered. We proved the criterion of completeness in the maximal ultraclone of self-dual hyperfunctions. Thus, all submaximal ultraclones of self-dual hyperfunctions are described.
Keywords: hyperfunction, Boolean function, self-dual function, closed set, ultraclone, lattice.
Mots-clés : superposition
@article{SEMR_2023_20_2_a16,
     author = {S. A. Badmaev and I. K. Sharankhaev},
     title = {On submaximal ultraclones of self-dual hyperfunctions of rank~$2$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1374--1380},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a16/}
}
TY  - JOUR
AU  - S. A. Badmaev
AU  - I. K. Sharankhaev
TI  - On submaximal ultraclones of self-dual hyperfunctions of rank~$2$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2023
SP  - 1374
EP  - 1380
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a16/
LA  - ru
ID  - SEMR_2023_20_2_a16
ER  - 
%0 Journal Article
%A S. A. Badmaev
%A I. K. Sharankhaev
%T On submaximal ultraclones of self-dual hyperfunctions of rank~$2$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2023
%P 1374-1380
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a16/
%G ru
%F SEMR_2023_20_2_a16
S. A. Badmaev; I. K. Sharankhaev. On submaximal ultraclones of self-dual hyperfunctions of rank~$2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 20 (2023) no. 2, pp. 1374-1380. http://geodesic.mathdoc.fr/item/SEMR_2023_20_2_a16/

[1] E.L. Post, “Introduction to a general theory of elementary propositions”, American J., 43:4 (1921), 163–185 | MR | Zbl

[2] V.I. Panteleyev, “Criteria of completeness for redefining Boolean functions”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2009:2(68) (2009), 60–79 | Zbl

[3] D. Lau, Function algebras on finite sets. A basic course on many-valued logic and clone theory, Springer, Berlin, 2006 | MR | Zbl

[4] N.A. Peryazev, Basics of the theory of Boolean functions, Fizmatlit, M., 2000

[5] S.A. Badmaev, A.E. Dugarov, I.V. Fomina, I.K. Sharankhaev, “On some intervals in the lattice of ultraclones of rank 2”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1210–1218 | DOI | MR | Zbl